International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us

IJSTR >> Volume 1 - Issue 6, July 2012 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Experimental Investigation And Statistical Analysis of Creep Properties of A Hybridized Epoxy-Alumina-Calcium Silicate Nanocomposite Material Operating At Elevated Temperatures

[Full Text]



Obuka Nnaemeka Sylvester P., Ihueze Chukwutoo Christopher, Okoli Ndubuisi Celestine, Ikwu Gracefield Okwudilichukwu R.



Keywords: Nanocomposites, Epoxy, Alumina, Calcium Silicate, ANOVA, Creep, Tensile Strength, SPSS Software



Abstract - The experiments of this research were designed to lend itself to two way and three way classification ANOVA analysis in the SPSS software. The new hybrid epoxy matrix composites consist of 5%wt, 10%wt, 15%wt, 20%wt, 25%wt, and 30%wt of fillers (alumina and calcium silicate) in nanoscale. Tensile strength of each constituent material was obtained through tensile experiments. Creep experiments were performed at temperatures of 500C, 700C, 900C, 1100C, and 1300C, at constant loading of 14 MPa. The composite material with 15%wt constituent showed highest tensile strength followed by the 20%wt constituent showing higher strength than a baseline Epoxy-Alumina nanocomposite. Also the 15%wt and the 20%wt constituents exhibited the best resistant property to creep than every other constituent at short term creep tests and at analytical results. Though the two way classification ANOVA show enough significance at 95% confidence interval, the three way classification ANOVA showed significances of time, temperature and samples (with interactions), which are responsible for the creep failure of the studied composites. The creep limit property of the new material was found to be higher than the creep limit of the Epoxy filled with Alumina only.



1. Akita, H., and Hattori, T. (1999). Studies on molecular composite.I. Processing of molecular composites using a precursor polymer for poly(P-Phenylene benzobisthiazole). Journal of Polymer Science: Part B: Polymer Physics, 37(3), 189-197.

2. ASM International (n.d). Tensile testing:. Introduction to tensile testing (2nd ed).www.asminternational.org.

3. Athawale, A.A., Bhagwat, S.V., Katre, P.P., Chandwadkar, A.J., and Karandikar, P. (2003). Aniline as a stabilizer for metal nanoparticles. Materials Letters, 57(24-25),3889-3894.

4. Daniel, I.M., Miyagawa, H., Gdoutos, E.E., and Luo, J.J. (2003). Processing and characteristization of epoxy/clay nanocomposites. Express Mechanics, 43, 348 – 354. Doi: 10.1243/03093247V293159.

5. Endo, M., Naguchi, T. and Ho, M., (2008). Extreme – performance rubber nanocomposites for probing and excavating deep oil resources using multi walled carbon nanotubes. Advanced Functional Materials, 18, 3403 -3409.

6. Evora, V.M.F., and Shukla, A. (2003). Fabrication, characterization and dynamic behaviour of polyester/Ti02 nanocomosites. Material Science Engineering A, 36, 358 – 366.

7. Eze, F.C.(2002). Introduction to analysis of variance, volume 1. Obiagu, Enugu: Lanno.

8. Gedney, R. (2002). Guide to testing metals under tension. Advanced Materials and Processes, pp 29 – 31.

9. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., and Schulte, K. (2004). Carbon nanotube reinforced epoxy – composites: Enhanced stiffness and fracture toughness at low nanotubes content. Composite science and Teachnology, 64, 2363 – 2371: Elsevier. Retrieved from http://www.hinari–gw.who.int/composite science technology.

10. Gorga, R.E., and Cohen, R.E. (2004). Toughness enhancements in poly (methyl methacrylate) by addition of oriented multi-wall carbon nanotube. Journal of Polymer Science, Part B: Polymer Physics, 42(4), 2690-2702.

11. Jenkins, M.G. (2007). Mechanical Engineering: Me 354 [Lecture notes]. Seattle, Washington: University of Washington, Department of Mechanical Engineering.

12. Lea, R.H. (2002). Composite piping systems to improve celi and gas production. Baton Ronge, LA: Edo Specialty plastics.

13. Luo, J.J., Daniel, I.M. (2003). Characterization and modeling of mechanical behaviour of pohymer/clay nanocomposites. Composite Science and Technology, 63(11), 1607-1616.

14. Masahiro, K., Yoshimichi, O., Masanori, K., Shigemitsu, O., and Toshikalsu, T. (2006). Preparation and various characteristics of epoxy/alumina nanocomposites. IEEJ Transactions on Fundamentals and Materials, 126 (11), 1121 – 1127: The Institution of Electrical Engineers of Japan. Doi:10.1541/iecjfms.126.1121.

15. Meda, L., Marra, G., Galfetti, L., Inchingalo, S., Severini, F., na De Luca, L. (2005). Nanocomposites for rocket solid propellants. Composites Science and Technology, 65(5), 769-773.

16. Milue, D. (2000). Small solutions for big returns. Oil and Gas Next Generation, Q4, 2009, 93-98. Retrieved from http://www.ngoilgas.com.

17. Omrani, A., Simon, L.C., and Rostami, A. (2009). The effect of alumina nanoparticle on the properties of epoxy resin system. Materials Chemistry and Physics 114 (1), 145 – 150: Elsevier. Retrieved from http://www.hinari-gw.who.int/compositescience.

18. Oriakhi, C.O. (1998). Nano Sandwiches. Chemical Briefing, 34:59-62.

19. Park, C., Park, O., Lim, J., and Kim, H. (2001). The fabrication of syndiotactic polystyrence/organophilic clay nanocomposites and their properties. Polymer Letters, 42, 7465 -7475.

20. Ray, S.S., and Bousmina, M. (2005). Brodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 50(8), 962-1079.

21. Ritchie, R.O. (1993). Mechanical behavior of materials [Lecture notes]. Rhoads, Berkely, California: University of California.

22. Roy, R., Roy, R.A., and Roy, D.M. (1986). Alternative perspectives on quasi–crystallinity: non-uniformity and nanocomposites. Material Letters, 4 (8-9), 323 – 328.

23. RTO Lecture series, EN-AVT- 129, May 2005.

24. Sailor, M.J., and Link, J.R. (2005). Smart dust: Nanostructured devices in a grain of sand. Chemical Community, 2005, 1375-1383.

25. Schmidt, D., Shah, D., and Giannelis, E.P. (2002). New advances in polymer/layered silicate nanocomposites. Current opinion in solid and Materials Science, 6 (3), 205 – 212.

26. Scott, S., Crudden, C.M., and Jones, C. W. (Eds) (2003). Nanostructured catalysts. Nanostructure science and Technology Series, P.342. New York: Springer.

27. Seppala, J. (2010). Editorial corner – a personal view Nanocomposites, excellent properties or hype? eXPRESS Polymer Letters, 4 (3), 130. DOI: 3144/expresspolymlett.2010.17

28. Usuki, A., Kawasum, M., Kojima, Y., Okada, A., Kuraruchi, T., and Kamigaito, O.J. (1993). Swelling behaviour of Montmorillorite cation exchanged for v-amiro acids by E-caprolactam. Materials Resources, 8(5), 1174.

29. Vincenzo, S., Fallatah, G.M., and Mehdi, M.S. (2010). Applications of nanocomposite materials in the Oil and Gas industry. Advanced Materials Research, 83(86), 771-776.

30. Walpole, R. E. (1982). Introduction to statistics (3rd ed.)pp 403 – 428. New York: Macmillan.

31. Wilshire, B., and Evans, R.W.(1994). Acquisition and analysis of creep data. The Journal of Strain Analysis for Engineering Design, 29, 159 – 165.

32. Yong, V., and Hahn, H.T (2004). Processing and properties of SiC/Vinyl ester nanocomposites. Nanotechnology, 15, 1338-1343.

33. Zavyalov, S.A., Pivkina, A.N., and Schoonman, J. (2002). Formation and characterization of metal-polymer nanostructured composites. Solid State Ionics, 147(3-40), 415-41.