International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us

IJSTR >> Volume 3- Issue 7, July 2014 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

An Efficient Approach For Optimal Prefetching To Reduce Web Access Latency.

[Full Text]



Dinesh Kumar, Reena Patel



Keywords: Latency, Cache, Prefetching, Apriori, Hyperlinks, Congestion, Data Retrieval, Optimal Prefetching



ABSTRACT: The exponential growth and popularity of WWW increases the amount of traffic which results in major congestion problems over the available bandwidth for the retrieval of data. This results in the increase of user perceived latency. Prefetching of web pages is a potential area that can significantly reduce the web access latency. It refers to the mechanism of deducing the forthcoming page accesses of a client. Prefetching reduces the user’s perceived latency but on the contrary it increases the traffic that may result in further congestion,. So the major concern of the prefetching is to device an algorithm that could efficiently and optimally prefetch the pages so that the traffic load is minimized. In this dissertation an optimal prefetching algorithm is proposed which gives the optimal number of web documents to be prefetched to reduce latency. The algorithm is based on the current content of the web documents so there is no requirement of maintaining past history of the users and is also beneficial for first retrieval of access of web resources.



[1]. T. Berners-Lee1, R. Cailliau2, N. Pellow3: The World-Wide Web Initiative

[2]. Tim Berners-Lee, Robert Cailliau : World-Wide Web

[3]. Sule Gunduz (2003): Recommendation Model for Web Users: User Interest Model and Click Stream Tree.

[4]. Daniel T. Larose : Discovering Knowledge in Data: An Introduction to Data Mining

[5]. Osmar R. Zaďane, 1999 : Principles of Knowledge Discovery in Databases

[6]. Agrawal R. and Srikant R. (1994): Fast Algorithm for Mining Association Rules

[7]. Rakesh Agarwal , Manish Mehta : The quest data mining system

[8]. :Navathe : Fundamental of database system

[9]. G. Piatetsky-Shapiro, U. M. Fayyad, and P. Smyth. From data mining to knowledge discovery: An overview.

[10]. T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communications of ACM

[11]. M. S. Chen, J. Han, and P. S. Yu. Data mining: An overview from a database perspective., 1996.

[12]. G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases.

[13]. J. Han and M. Kamber. Data Mining: Concepts and Techniques

[14]. Azizul Azhar Bin Ramli: Web Usage Mining using Apriori Algorithm: UUM Learning Care Portal Case.

[15]. R.Cooley, B.Mobasher and J.Srivastava. Web Mining: Information and Pattern Discovery on the World Wide Web, 1997

[16]. Srivasta, J., Cooley, R. Deshpande, M., and Tan P. N. (2000). Web Usage Mining: Discovery and Application of Web Usage Pattern from Web Data.

[17]. Raymond Kosala, Hendrik Blockeel : Web Mining Research: A Survey

[18]. S. Schechter, M. Krishnan, M.D. smith : Using path profiles to predict HTTP requests.

[19]. C.M. Brown, P.B. Danzig : The Harvest Information Discovery and Access System

[20]. E. Spertus. Parasite : Mining structural information on the web

[21]. R.B. Doorenbos, O. Etzioni and D.S. Weld : A scalable comparision shopping agent for the WWW.

[22]. W.B. Fakes and R. Baeza-Yates : Information reterival data structures and algorithms

[23]. M. Pazzani,J. Muramatsu and D. Billsus : Syskill&Webert: Identifying interesting web sites.

[24]. S. Chakrabarti, B. Dom and P. Indyk : Enhanced hypertext categorization using hyperlinks

[25]. S. Brin and L. Page : the anatomy of a large-scale hypertextual web search engine

[26]. J.Borges and M. Levene. : Data Mining of User Navigation Pattern

[27]. L. Catledge and J. Pitkow. Characterizing browsing behaviors on the world wide web

[28]. Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava. Data preparation for mining world wide web browsing patterns

[29]. Peter Pirolli, James Pitkow, and Ramana Rao. Silk from a sow's ear: Extracting usable structures from the web.

[30]. R. Agrawal and R. Srikant. Fast algorithms for mining association rules, 1994

[31]. Bamshad Mobasher, Robert Cooley, and Jaideep Srivastava. Creating adaptive web sites through usagebased clustering of urls.

[32]. Abdullah Balamash and Marwan Krunz (2004): A client Side WWW Prefetching Model.

[33]. J. Griffioen and R. Appleton, “Reducing file system latency using a predictive approach

[34]. christos bouras and agisilaos konidaris : Predictive Prefetching on the Web and its Potential Impact in theWide Area

[35]. T. Joachims, D. Freitag, and T. Mitchell. Webwatcher: A tour guide for the world wide web

[36]. D.S.W. Ngu and X. Wu. Sitehelper: A localized agent that helps incremental exploration of the world wide web.

[37]. H. Lieberman. Letizia: An agent that assists web browsing.

[38]. Bamshad Mobasher, Robert Cooley, and Jaideep Srivastava. Creating adaptive web sites through usagebased clustering of urls.

[39]. T. Yan, M. Jacobsen, H. Garcia-Molina, and U. Dayal. From user access patterns to dynamic hypertext linking.

[40]. Olfa Nasraoui, Raghu Krishnapuram, and Anupam Joshi. Mining web access logs using a fuzzy relational clustering algorithm based on a robust estimator.

[41]. Evangelos Markatos, Main Memory Caching of Web Documents

[42]. Anawat Chankhunthod et al : A Hierarchical Internet Object Cache

[43]. Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira. Characterizing reference locality in the www.

[44]. S. Schechter, M. Krishnan, and M. D. Smith. Using path profiles to predict http requests.

[45]. Charu C Aggarwal and Philip S Yu.: On disk caching of web objects in proxy servers.

[46]. Mike Perkowitz and Oren Etzioni.: Adaptive web sites:Automatically synthesizing web pages.

[47]. Mike Perkowitz and Oren Etzioni. Adaptive web sites: Conceptual cluster mining

[48]. Alex Buchner and Maurice D Mulvenna. Discovering internet marketing intelligence through online analytical web usage mining.

[49]. Balaji Padmanabhan and Alexander Tuzhilin. A belief-driven method for discovering unexpected patterns.

[50]. L. Catledge and J. Pitkow. Characterizing browsing behaviors on the world wide web.

[51]. D. Duchamp, Prefetching hyperlinks, 1999.

[52]. T. Palpanas and A. Mendelzon. Web prefetching using partial match prediction.

[53]. R. Hugo Patterson : Informed prefetching and caching

[54]. Ken-ichi Chinen, “WWW Collector Home Page”

[55]. V.N. Padmanabhan, J.C. Mogul, “Using Predictive Prefetching to Improve World Wide Web Latency”

[56]. Azer Bestavros, Using Speculation to Reduce Server Load and Service Time on the WWW.

[57]. L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web prefetching between low-bandwidth clients and proxies: Potential and performance.

[58]. E.P. Markatos and C.E. Chronaki. A Top-10 Approach to Prefetching on the Web

[59]. Carlos Cuncha, Carlos Jaccoud, Determining WWW User’s Next Access and its Application to prefetching

[60]. Catledge Pitkow, Characterizing Browsing Strategies in the World Wide Web

[61]. D. Menasce, V. Almeida, R. Fonseca, and M. Mendes, “A methodology for workload characterization of e-commerce sites”

[62]. B. D. Davison, “Predicting Web actions from HTML content”