IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 4 - Issue 7, July 2015 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Crisp Function Of Integral Nonlinaer Equation Of The Second Kind Over The Fuzzy Interval With Application

[Full Text]

 

AUTHOR(S)

Alan jalal Abdulqader

 

KEYWORDS

Keywords: fuzzy number; volterra non-linear integral equation of second kind; trapezoidal quadrature method; fuzzy interval; LR-Type of fuzzy interval.

 

ABSTRACT

ABSTRACT: In this paper, the basic principle and definitions for nonlinear integral equation of a crisp function over a fuzzy interval have been discussed. a numerical technique method and some algorithm for solving non-linear of crisp valued function over fuzzy interval using the domain and range partitions of the membership functions of the fuzzy interval . the numerical solution of the crisp function over the fuzzy interval using the LR-type representation of fuzzy interval. Some numerical examples are prepared to show the efficiency and accuracy of the methods

 

REFERENCES

[1] K. E. Atkinson, The Numerical solution of Integral Equation of the Second Cambridge University Press, 1997.

[2] A. Alipanah and M. Dehghan, Numerical solution of the nonlinear Fredholm integral equations by positive definitions. Appl. Math. Comput., 190(2007), 1754-176.

[3] J. Store and R. Bulirsch, Introduction to Numerical Analysis, Second ed, Springer-Verlag, 1993.

[4] Chen, S. H. 1985. Operations on fuzzy numbers with function principle.Tamkang journal of Management Science, 6:13-25

[5] R. Goetschel, W. Voxman, Elementary calculate, fuzzy Sets System 18 (1986)31-43

[6] C. T. H. Baker, A perspective on the numerical treatment of volterra equations, Journal of Computational and Applied Mathematics, 125 (2000), 217-249.

[7] D. Dubois and H. Prade, Operations on fuzzy numbers, International Journal of Systems Science, 9 (1978), 613-626.

[8] A. Kaufmann and M. M. Gupta, Introduction fuzzy arithmetic, Van Nostrand Reinhold, New York, 1985

[9] S. Abbasbandy, E. Babolian and M. Alavi, Numerical method for solving linear fredholm fuzzy integral equations of the second kind, Chaos Solitons& Fractals, 31 (2007), 138-146.

[10] T. Allahviranloo and M. Otadi, Gaussian quadratures for approximate of fuzzy multiple integrals, Applied Mathematics and Computation, 172 (2006), 175-187.

[11] M. Ma, M. Friedman and A. Kandel, A new fuzzy arithmetic, Fuzzy Sets and Systems, 108 (1999), 83-90

[12] C. T. H. Baker, A perspective on the numerical treatment of volterra equations, Journal of Computational and Applied Mathematics, 125 (2000), 217-249

[13] A. M. Bica, Error estimation in the approximation of the solution of nonlinear fuzzy fredholm integral equations, Information Sciences, 178 (2008), 1279-1292

[14] D. Dubois and H. Prade, Operations on fuzzy numbers, International Journal of Systems Science, 9 (1978), 613-626.

[15] G. J. Klir, U. S. Clair and B. Yuan, Fuzzy set theory: foundations and applications, Prentice-Hall, 1997.

[16] W. Congxin and M. Ming, On embedding problem of fuzzy number spaces, Part 1, Fuzzy Sets and Systems, 44 (1991), 33-38.

[17] M. L. Puri and D. Ralescu, Fuzzy random variables, Journal of Mathematical Analysis and Applications, 114 (1986), 409-422.

[18] EmanA.hussain, Existence and uniqueness of the solution of nonlinear integral equation , Department of mathematics /college of science ,university of Al-mustansiriyah Iraq/ Baghdad ,vol.26(2)2013

[19] Kandel, A., “Fuzzy Mathematical Techniques with applications”, Addison Wsely publishing Company, Inc., (1986)

[20] Negotia, C. V.mRalescu, D. A., “Application of Fuzzy Sets to System Analysis “ Basel, Stuttgart, (1975)

[21] Zadeh, L. A., “fuzzy Sets”, Information Control, Vol.8, (1965), pp338-353

[22] Dubois, D. and Prade, H., “Fuzzy Sets and System: Theory and Application”,Academic Press, Inc., (1908)