IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 6 - Issue 7, July 2017 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Convergence Of Cloud Computing, Internet Of Things, And Machine Learning: The Future Of Decision Support Systems

[Full Text]

 

AUTHOR(S)

Gilberto Crespo-Perez, Dr. Angel Ojeda-Castro

 

KEYWORDS

Artificial Intelligence, Business Analytics, Cloud Computing, Decision Support Systems, Internet of Things, Machine Learning, Neural Networks.

 

ABSTRACT

The objective of this research was to develop a framework for understanding the Convergence of Cloud Computing, Machine Learning, and Internet of Things as the future of Decision Support Systems. To develop this framework, the researchers analyzed and synthesized 35 research articles from 2006 to 2017. The results indicated that when the data is massive, it is necessary to use computational algorithms and complex analytical techniques. The Internet of Things, in combination with the large accumulation of data and data mining, improves the learning of automatic intelligence for business. This is due to the fact that the technology has the intelligence to infer and provide solutions based on past experiences and past events.

 

REFERENCES

[1]. Al-Jarrah, O. Y., Yoo, P. D., Muhaidatc, S., Karagiannidis, G. K., & Tahaa, K. (2015). Efficient Machine Learning for Big Data: A review. Big Data Research. 2(3), 87–93.

[2]. Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H.-P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys and Tutorials. 16(4), 1–23. http://doi.org/10.1109/COMST.2014.2320099

[3]. Andersson, A.S. & Grönlund, Å. (2009) ‘A conceptual framework for e-learning in developing countries: A critical review of research challenges. The Electronic Journal of Information Systems in Developing Countries, p.38.

[4]. Assem, H., Xu, L., Buda, T. S., & O’Sullivan, D. (2016). Machine Learning as a service for enabling Internet of Things and people. Personal and Ubiquitous Computing. 20(6), 899–914. http://doi.org/10.1007/s00779-016-0963-3

[5]. Bishop, C. M. (2008). A new Framework for machine learning. Machine Learning. 5050(5050), 1–24. http://doi.org/10.1007/978-3-540-68860-0_1

[6]. Bishop, C. M. (2013). Model-based Machine Learning. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences. 371(1984). http://doi.org/10.1098/rsta.2012.0222

[7]. Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A. V., & Rong, X. (2015). Data mining for the Internet of Things: Literature review and challenges. International Journal of Distributed Sensor Networks, 2015(i). http://doi.org/10.1155/2015/431047

[8]. Coglianese, C., & Lehr, D. (2017). Regulating by Robot: Administrative Decision Making in the Machine-Learning Era.

[9]. Deo, R. C. (2015). Machine Learning in medicine. Circulation. 132(20), 1920–1930. http://doi.org/10.1161/CIRCULATIONAHA.115.001593

[10]. Dietterich, T. (1996). Machine Learning. ACM Computing Surveys. 28(4es), 3–es. http://doi.org/10.1145/242224.242229

[11]. Dietterich, T. G. (1997). Machine-learning research. AI Magazine. 18(4), 97. http://doi.org/10.1609/aimag.v18i4.1324

[12]. Grimmer, J. (2015). We are all social scientists now: How big data, machine learning, and causal inference work together. PS: Political Science & Politics, 48(1), 80–83. http://doi.org/10.1017/S1049096514001784

[13]. Guo, Z. (2016). Intelligent Decision-making Models for Production and Retail Operations. Springer.

[14]. Gusmeroli, S., Haller, S., Harrison, M., Kalaboukas, K., Tomasella, M., Vermesan, O., & Wouters, K. (2009). Vision and challenges for realizing the Internet of Things. Proceedings of the 3rd STI Roadmapping Workshop (Vol. 1). http://doi.org/10.2759/26127

[15]. Gutierrez, D. (2016). Big data industry predictions for 2017. Retrieved from http://insidebigdata.com/2016/12/21/big-data-industry-predictions-2017/

[16]. Holzinger, A. (2016). Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Informatics, 3(2), 119–131. http://doi.org/10.1007/s40708-016-0042-6

[17]. Iniesta, R., Stahl, D., & McGuffin, P. (2016). Machine Learning, statistical learning and the future of biological research in psychiatry. Psychological Medicine, (May), 1–11. http://doi.org/10.1017/S0033291716001367

[18]. Johnson, A. E. W., Ghassemi, M. M., Nemati, S., Niehaus, K. E., Clifton, D. A., & Clifford, G. D. (2016). Machine learning and decision support in critical care. Proceedings of the IEEE, 104(2), 444–466. http://doi.org/10.1109/JPROC.2015.2501978

[19]. Jordan, M. I., & Mitchell, T. M. (2015). Machine Learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. http://doi.org/10.1126/science.aaa8415

[20]. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.

[21]. Kang, J., Schwartz, R., Flickinger, J., & Beriwal, S. (2015). Machine Learning approaches for predicting radiation therapy outcomes: A clinician’s perspective. International Journal of Radiation Oncology Biology Physics, 93(5), 1127–1135. http://doi.org/10.1016/j.ijrobp.2015.07.2286

[22]. Kautish, S., & Thapliyal, P. M. P. (2012). Concept of decision support systems in relation with knowledge management – Fundamentals, theories, frameworks and practices. 1(2), 1–9.

[23]. Lavecchia, A. (2015). Machine-learning approaches in drug discovery: Methods and applications. Drug Discovery Today, 20(3), 318–331. http://doi.org/10.1016/j.drudis.2014.10.012

[24]. Libbrecht, M. W., & Noble, W. S. (2015). Machine Learning applications in genetics and genomics. Nature Reviews Genetics, 16(6), 321–332. http://doi.org/10.1038/nrg3920

[25]. Malhotra, R. (2015). A systematic review of Machine Learning techniques for software fault prediction. Applied Soft Computing Journal, 27, 504–518. http://doi.org/10.1016/j.asoc.2014.11.023

[26]. Miller, S., Curran, K., & Lunney, T. (2016). Cloud-based Machine Learning for the detection of anonymous web proxies. 2016 27th Irish Signals and Systems Conference, ISSC 2016. http://doi.org/10.1109/ISSC.2016.7528443

[27]. Mitchell TM (1997) Machine Learning. McGraw Hill: New York

[28]. Norris, F.D. & Lloyd, B.A. (2006) ‘The scholarly literature on e-government: characterizing a nascent field’, International Journal of Electronic Government Research, Vol. 2, No. 4, pp.40–56.

[29]. Page, A., Hijazi, S., Askan, D., Kantarci, B., & Soyata, T. (2016). Research directions in Cloud-based Decision Support Systems for health monitoring using Internet-of-things driven data acquisition. International Journal of Services Computing, 4(4), 18–34.

[30]. Reshi, Y. S., & Khan, R. A. (2014). Creating business intelligence through machine learning: An Effective business decision making tool. Information and Knowledge Management, 4(1), 65–75.

[31]. Safdar, S., Zafar, S., Zafar, N., & Khan, N. F. (2017). Machine Learning based Decision Support Systems (DSS) for heart disease diagnosis: a review. Artificial Intelligence Review. http://doi.org/10.1007/s10462-017-9552-8

[32]. Sharma, R., Mithas, S., & Kankanhalli, A. (2014). Transforming decision-making processes: A research agenda for understanding the impact of business analytics on organizations. European Journal of Information Systems, 23(4), 433–441. http://doi.org/http://dx.doi.org/10.1057/ejis.2014.17

[33]. Tsai, C. W., Lai, C. F., Chiang, M. C., & Yang, L. T. (2014). Data mining for Internet of things. IEEE Communications Surveys & Tutorials, 16(1), 77–97.

[34]. Turban, E., Aronson, J. E., Liang, T. P., & Sharda, R. (2012). Decision Support System and Business Intelligence.

[35]. Wen, J., Li, S., Lin, Z., Hu, Y., & Huang, C. (2012). Systematic literature review of Machine Learning based software development effort estimation models. Information and Software Technology, 54(1), 41–59. http://doi.org/10.1016/j.infsof.2011.09.002

[36]. Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The Internet of Things - A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274. http://doi.org/10.1007/s10796-014-9489