IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 8 - Issue 7, July 2019 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Uniserial Dimension Of Module Over Using Python

[Full Text]

 

AUTHOR(S)

Arifin S., Garminia H.

 

KEYWORDS

Uniserial dimension, module over , Python

 

ABSTRACT

Recently, the notion of the uniserial dimension of a module over a commutative ring that measures of how far the module deviates from being uniserial was introduced by Nazemian in 2014. In this article, we give some methods to determine the uniserial dimension of a finitely generated primary module over a principal ideal domain, especially using Python. It is well known that finitely generated primary modules over a principal ideal domain can be decomposed as a direct sum of finite cyclic submodules where the orders of the cyclic generators are called the elementary divisors of the module. We show that is depends on prime factorization of m and n.

 

REFERENCES

[1] Atiyah, M. F. dan MacDonald, I. G., 1969, Introduction to Commutative Algebra, Addison-Wesley Publication Co., London
[2] Aditya, R., Belajar Python: Faktorisasi Prima Sebuah Bilangan, https://adityarizki.net/belajar-python-faktorisasi-prima-sebuah-bilangan/, 29 April 2018
[3] Dummit, D. S., 2004, Abstract Algebra 3rd Edition (New York: John Wiley and Son Inc)
[4] Eisenbud, D. dan Griffith, P., 1971, Serial Rings, J. Algebra, 17, 389-400.
[5] Facchini, A. dan Salce, L., 1990, Uniserial modules: sums and isomorphisms of subquotients, Comm. Algebra 18, 2, 499517.
[6] Faith, C., 1984, The structure of valuation rings, J. Pure Appl. Algebra, 31, 7-27.
[7] Faith, C., 1986, The structure of valuation rings II, J. Pure Appl. Algebra, 42, 37-43.
[8] Gallian, J.A., 2017, Contemporary Abstract Algebra, 9th Edition, USA.
[9] Ghorbani, A. dan Nazemian, Z., 2015, On commutative rings with uniserial dimension, Journal of Algebra and Its Aplications, 14, 1, 1-10.
[10] Huang, H. Algebra Lecture Notes. Auburn University Press, http://www.auburn.edu/ huanghu/math5310/, 2010.
[11] Kaplansky, I., 1952, Modules over Dedekind rings and valuation rings, Trance. Amer. Math. Soc., 72, 327-340.
[12] Lam, T. Y. (1991): A First Course in Noncommutative Rings, Grad. Texts in Math., Springer, New York.
[13] Manis, M., 1969, Valuation on a commutative ring, Proc. Amer. Math. Soc, 20, 193-198
[14] Nazemian, Z., Ghorbani, A. dan Behboodi, M., 2014, Uniserial dimension of modules, J. Algebra, 399, 894-903.
[15] Roman, S, 2008, Advanced Linear Algebra, New York, Springer
[16] Rotman, J. J., 2003, Advanced Modern Algebra, New York, Prentice Hall
[17] Samsul A, Hanni G.Y., Pudji A., 2016, Dimensi Valuasi dari Daerah Ideal Utama, Prosiding Semnas KPA Univ. Sanata Dharma, 9-16.
[18] Stoll, R. R., 1961, Set Theory and Logic, Dover Publication Inc., New York.
[19] Warfield, R. B., 1975, Serial rings and finitely presented modules, J. Algebra, 37, 187222.
[20] Wolfram Demonstrations Project, Subgroup Lattices of Finite Cyclic Groups, http://demonstrations.wolfram.com/SubgroupLatticesOfFiniteCyclicGroups/, 20 Juli 2018