International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 4 - Issue 8, August 2015 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Electron Acceleration By The Use Of Segmented Cylindrical Electrodes In An Inverse Free Electron Laser

[Full Text]



M. Nikrah



Keywords: Electron acceleration, Inverse free-electron laser, Paul wiggler, Runge-Kutta method, Oscillatory voltage, cylindrical electrodes



Abstract- In this paper we expend a theory of high gradient laser excited electron accelerator by the use of an inverse free-electron laser (IFEL), but with using new structure and design. The wiggler used in our scheme, that is to say Paul wiggler, is obtainedby segmented cylindrical electrodes with applied oscillatory voltagesV_osc (t)over 90-degrees segments. The inverse free-electron laser interaction can be demonstrated by the equations that govern the electron motion in the composed fields of both laser pulse and Paul wiggler field. A numerical research of electron energy and electron trajectories has been made using fourth order Runge-Kutta method. The results show that the electron gains the maximum energy at a short distance for high wiggler amplitude intensities a_0w. In addition, it is discovered that the electron energy gains various peaks for different initial axial velocities. It is seen that aappropriate small initial axial velocity of e-beam produces remarkably high energy gain. According to the transverse limitation of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this devise.



S. Ya. Tochitsky, O. B. Williams et al., Phys. Rev. Lett. 12, 050703 (2009)

Charles. Varin, Michel. Piche, Phys. Rev. Lett. 71, 026603 (2005)

W. Leemans, B. Nagler, A. J. Gonsalves, Cs. To ́th, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nat. Phys. 2, 696 (2006)

J. Liu et al., Phys. Rev. Lett. 107, 035001 (2011)

R. Palmer, J. Appl. Phys. 43, 3014 (1972)

E. D. Courant, C. Pellegrini, and W. Zakowicz, Phys. Rev. A 32, 2813 (1985)

W. Kimura et al., Phys. Rev. Lett. 86, 4041 (2001)

W. Kimura et al., Phys. Rev. Lett. 92, 054801 (2004)

M. Dunning, E. Hemsinget al., Phys. Rev. Lett. 110, 244801 (2013)

C. Sung et al.,Phys. Rev. Lett. 9, 120703 (2006)

W. Kimura et al., Phys. Rev. Lett. 92, 054801 (2004)

P. Musumeciet al., Phys. Rev. Lett. 94, 154801 (2005)

D. N. Gupta, Chang-Mo Ryu, Phys. Plasmas. 12, 053103 (2005)