International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 8 - Issue 8, August 2019 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Aromatic Plants: Phytoremediation of Cadmium Heavy Metal and The Relationship to Essential Oil Production

[Full Text]



Yustina Sri Sulastri, Koko Tampubolon



Aromatic Plants, Cadmium, Heavy Metal, Phytoremediation



This research was aimed to obtain the aromatic plants selected as phytoremediation of cadmium heavy metals (Cd-HM) and their relationship to essential oil production. This research was conducted in the Experiment Land, the Faculty of Agriculture, Universitas Sumatera Utara in March until May 2018. This research was used as a non-factorial Randomized Block Design (RBD) with three replications. Plants treatment: P1 (Vetiveria zizanioides), P2 (Cymbopogon nardus), P3 (Curcuma xanthorrhiza), P4 (Cymbopogon citratus), P5 (Pogostemon cablin), P6 (Alpinia galanga) were treated stress heavy metal of 100 ppm 3CdSO4.8H2O. The parameters include water content, Cd-HM uptake, Cd-HM uptake ratio, essential oil total content, translocation factor, correlation coefficient, and determination. The analysis using the ANOVA and were continued by DMRT at level 5%, and multiple linear regression using the IBM SPSS Statistics 20 software. The results showed that translocation factor value sequentially of P5> P6> P4> P2> P3> P1. The Cd-HM uptake ratio in the root was higher than in the shoot except for P4 plant. There was an increase in the essential oil total content in the P1, P2 and P5 plants of 101.56%; 12.70% and 2.27%, respectively. The increased water content in the plant can decrease the essential oil total content but the Cd-HM uptake can increase the essential oil total content. The water content, Cd-HM uptake in the root and shoot had positive linear correlation, were classified as weak (r = 0.30) and their relationship of 9.10% (slightly) to the essential oil total content.



[1] S. Clemens, M.G. Palmgren, and U. Kramer, “A Long Way Ahead: Understanding and Engineering Plant Metal Accumulation,” Trends Plant Sci, 7(7), 309–315, (2002). https://doi.org/10.1016/S1360-1385(02)02295-1.
[2] L.S. Nopriani, “Teknik Uji Cepat untuk Identifikasi Pencemaran Logam Berat Tanah di Lahan Apel Batu,” Retrieved from Universitas Brawijaya, Indonesia, (2011), (Dissertation).
[3] E. Zoidis, K. Fegeros, G. Zervas, P.F. Surai, and A.C. Pappas, “Cadmium Toxicity and The Antioxidant System,” New York: Nova Science Pub Inc, (2010).
[4] B.J. Alloway, “Heavy metals in soil,” New York: John Willey and Sons Inc, (1990).
[5] Charlena, “Pencemaran Logam Berat Timbal (Pb) dan Cadmium (Cd) pada Sayur-Sayuran,” Falsafah Sains. Program Pascasarjana S3 IPB, (2004).
[6] J-L. Morel, G. Echevarria, and N. Goncharova, “Phytoremediation of Metal-Contaminated Soils,” Netherland: Springer. http://doi.org/10.1007/1-4020-4688-X, (2002).
[7] X. Zhang, B. Gao, and H. Xia, “Effect of Cadmium on Growth, Photosynthesis, Mineral Nutrition and Metal Accumulation of Bana Grass and Vetiver Grass,” Ecotoxicol. Environ. Saf, 106, 102–108, https://doi.org/10.1016/j.ecoenv.2014.04.025, (2014).
[8] R.I. Hapsari, and S.U. Lestari, “Fitoremediasi Logam Berat Kadmium (Cd) pada Tanah yang Tercemar dengan Tanaman Biduri (Caloptropis gegantea) dan Rumput Gajah (Panicum maximum),” J. Ilm. Hijau Cendekia, 2 (1), 9-14, (2017)
[9] Y. Chen, Z. Shen, and X. Li, “The Use of Vetiver Grass (Vetiveria zizanioides) in The Phytoremediation of Soils Contaminated with Heavy Metals,” Appl. Geochemistry, 19(10), 1553-1565, https://doi.org/10.1016/j.apgeochem.2004.02.003, (2004).
[10] K. Sumiartha, N. Kohdrata, and N.S. Antara, “Modul Pelatihan Budidaya dan Pasca Panen Tanaman Sereh (Cymbopogon citratus (DC.) Stapf.),” Pusat Studi Ketahanan Pangan, Universitas Udayana, Indonesia, (2012).
[11] L.Q. A’yun, M.D. Maghfoer, and T. Wardiyati, “Influence of Shoot Length and Weight of Rhizome in Java Turmeric (Curcuma xanthorrhiza Robx.) Plant Growth,” J. Produksi Tanam, 3(7), 600–606, (2015).
[12] M. Amin, “Potensi Terpendam Tanaman Nilam,” Retrieved from: http://www.riaupos.com, (2006).
[13] S. Helmi, and M. Lufti, “Analisis Data,” Medan: Universitas Sumatera Utara Press, (2010).
[14] L.E. Hernández, A. Garate, and R. Carpena-Ruiz, “Effects of Cadmium on The Uptake, Distribution, and Assimilation of Nitrate in Pisum sativum,” Plant Soil, 189(1), 97-106, https://doi.org/10.1023/A:1004252816355, (1997).
[15] A. Aibibu, Y. Liu, G. Zeng, X. Wang, B. Chen, H. Song, and L. Xu, “Cadmium Accumulation in Vetiveria zizanioides and Its Effects on Growth, Physiological and Biochemical Characters,” Bioresour. Technol. 101(16), 6297-6303, https://doi.org/10.1016/j.biortech.2010.03.028,(2010).
[16] N. Lydakis-Simantiris, M. Fabian, and M. Skoula, ”Cultivation of Medicinal and Aromatic Plants in Heavy Metal Contaminated Soils,” Glob NEST J. 18(3), 630-642, https://doi.org/10.30955/gnj.001829, (2016).
[17] E. Proklamasiningsih, I. Budisantoso, and Kamsinah, ”Cadmium (Cd) Absorption and Phenol Content in Pogostemon Exposed to Heavy Metals,” J Trop Life Sci. 8(1), 6-10, https://doi: 10.11594/jtls.08.01.02, (2018).
[18] G. Brunetti, K. Farrag, P. Soler-rovira, M. Ferrara, F. Nigro, and N. Senesi, “Heavy Metals Accumulation and Distribution in Durum Wheat and Barley Grown in Contaminated Soils Under Mediterranean Field Conditions,” J. Plant Interact, 7(2), 160-174. https://doi.org/10.1080/17429145.2011.603438,(2012).
[19] P. Champagnat, G. Figuerdo, J.C. Chalchat, and J.M. Bassiere, “A study on The Composition of Commercial Vetiveria zizanioides Oils from Different Geographical Origins,” J. Essent. Oil Res, 18(4), 416-422, https://doi.org/10.1080/10412905.2006.9699129, (2006).
[20] Y.S. Sulastri, E. Purba, and K. Tampubolon, “Evaluasi Kemampuan beberapa Jenis Tanaman sebagai Fitoremediasi Logam Berat Kadmium,” J. Pertan. Trop, 6(1), 62-71, (2019).
[21] A. Prasad, S. Chand, S. Kumar, A. Chattopadhyay, and D.D. Patra, “Heavy Metals Affect Yield, Essential Oil Compound, and Rhizosphere Microflora of Vetiver (Vetiveria zizanioides Linn. nash) Grass,” Commun. Soil Sci. Plant Anal, 45(11), 1511-1522, https://doi.org/10.1080/00103624.2014.904334,(2014).
[22] P.S. Kakaraparthi, K.V.N.S. Srinivas, J.K. Kumar, A.N. Kumar, D.K. Rajput, and V.U.M. Sarma, “Variation in The Essential Oil Content and Composition of Citronella (Cymbopogon winterianus Jowitt.) in Relation to Time of Harvest and Weather Conditions,” Ind. Crops Prod, 61, 240-248, https://doi.org/10.1016/j.indcrop.2014.06.044, (2014).
[23] Y.F. Lin, and M.G.M. Aarts, “The Molecular Mechanism of Zinc and Cadmium Stress Response in Plants,” Cell Mol. Life Sci, 69(19), 3187-3206, https://doi.org/10.1007/s00018-012-1089-z, (2012).
[24] A.A. Mahmoud, A.S.H. Gendy, H.A.H.S. Ahl, D. Grulova, T. Astatkie, and T.M. Abdelrazik, “Impacts of Harvest Time and Water Stress on The Growth and Essential Oil Components of Horehound (Marrubium vulgare). Sci. Hortic, 232, 139–144, https://doi.org/10.1016/j.scienta.2018.01.004, (2018).