On Multidimensional ﬁxed Point Theorems In Ordered VFuzzy Metric Spaces
[Full Text]
AUTHOR(S)
Ayush Bartwal, R. C. Dimri, Gopi Prasad
KEYWORDS
Common fixed point, Fuzzy metric spaces, Vfuzzy metric spaces. MSC: 47H10, 54H25.
ABSTRACT
In this article, we establish some coincidence point and common ﬁxed point theorems in the recently introduced notion of partially ordered Vfuzzy metric spaces for ϕcontraction. Using the results, suitable conditions are framed to make sure the existence of multidimensional coincidence point and common ﬁxed point results, which generalize and improve ﬁxed point results of Gupta and Kunwar [Fixed Point Theory and Application (2016), 2016:51]. We also give an example to support our main result.
REFERENCES
M. Abbas, B. Ali, and Y. I. Suleiman, “Generalized coupled common ﬁxed point results in partially ordered Ametric spaces,” Fixed Point Theory Appl., vol. 64, 2015.
M. Abbas, M. A. Khan, and S. Radenovic,“Common coupled ﬁxed point theorems in cone metric spaces for wcompatible mappings,” Appl. Math. Comput., vol. 217, no. 1, pp.195202, 2010.
V. Berinde, and M. Borcut,“Tripled ﬁxed point theorems for contractive type mappings in partially ordered metric spaces,” Nonlinear Anal., vol. 74, pp. 48894897, 2011.
M. Berzig, and B. Samet,“An extension of coupled ﬁxed points concept in higher dimension and applications,” Comput. Math. Appl., vol. 63, no.8, pp. 13191334, 2012.
L. Ciric, “Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces,” Nonlinear Anal., vol. 72, pp. 20092018, 2010.
JX. Fang,“Common ﬁxed point theorems of compatible and weakly compatible maps in Menger spaces,” Nonlinear Anal. Vol. 71, pp. 18331843, 2009.
JX. Fang,“On φcontractions in probabilistic and fuzzy metric spaces,” Fuzzy Sets Syst., vol. 267, pp. 8699, 2015.
A. George, and P. Veeramani, “On some results in fuzzy metric spaces,” Fuzzy Sets Syst., vol. 64, pp. 395399, 1994.
T. GnanaBhaskar, and V. Lakshmikhantham,“Fixed point theorems in partially ordered metric spaces and applications,” Nonlinear Anal., vol. 65, no. 7, pp. 13791393, 2006.
D. Guo, V. and Lakshmikantham, “Coupled ﬁxed points of non linear operators with applications,” Non linear Anal., vol. 11, pp. 623632, 1987.
V. Gupta, and A. Kunwar, “VFuzzy metric space and related ﬁxed point theorems,” Fixed Point Theory and Applications, vol. 51,2016.
O. Hadzic, “Fixed point theorems for multivalued mappings in probabilistic metric spaces,” Mat. Vesn., vol. 3, pp. 125133, 1979.
X. Q. Hu, M. X. Zheng, B. Damjanovic, and X. F. Shao, “Common coupled ﬁxed point theorems for weakly compatible mappings in fuzzy metric spaces,” Fixed Point Theory Appl., vol. 220, 2013.
J. Jachymski,“On probabilistic φcontractions on Menger spaces,” Nonlinear Anal., vol. 73, pp. 21992203, 2010.
G. Jungck, and B. E. Rhoades,“Fixed points for set valued functions without continuity,” Indian J. Pure Appl. Math., vol. 29, pp. 227238, 1998.
E. Karapmar, “Quadruple ﬁxed point theorems for weak Φcontractions,” ISRN Math. Anal., 2011.
I Kramosil, and J. Michalek, “Fuzzy metric and statistical metric spaces,” Kybernetika, vol. 11, pp. 336344, 1975.
J. MartinezMoreno, A. Roldan, C. Roldan, and Y.J. Cho, “Multidimensional coincidence point theorems for weakly compatible mappings with the CLRg property in (fuzzy) metric spaces,” Fixed Point Theory and Applications, vol. 53, 2015.
A. Roldan, J. MartinezMoreno, C. Roldan, and E. Karapinar, “Some remarks on multidimensional ﬁxed point theorems,” Fixed Point Theory, vol. 15, no. 2, pp. 545558, 2014.
A. Roldan, J. MartinezMoreno, and C. Roldan,“Multidimensional ﬁxed point theorems in partially ordered complete metric spaces,” J. Math. Anal. Appl., vol. 96 pp. 536545, 2012.
A. Roldan, J. MartinezMoreno, C. Roldan, and Y. J. Cho, “Multidimensional coincidence point results for compatible mappings in partially ordered fuzzy metric spaces,” Fuzzy Sets Syst. , vol. 251, no. 16), pp. 7182, 2014.
B. Schweizer, and A. Sklar,“Probabilistic metric space,” Elsevier, New York, 1983.
S. Sedghi, I. Altun, and N. Shobe,“Coupled ﬁxed point theorems for contractions in fuzzy metric spaces,” Non linear Anal., vol. 72, pp. 12981304, 2010.
S. Sedghi, N. Shobe, and A. Aliouche, “A generalization of ﬁxed point theorems in Smetric spaces,” Mat. Vesn., vol. 64, no. 3, pp. 258266, 2012.
G. Sun, and K. Yang, “Generalized fuzzy metric spaces with properties,” Res. J. Appl. Sci., vol. 2, pp. 673678, 2010.
S. Wang, “Coincidence point theorems for Gisotone mappings in partially ordered metric spaces,” Fixed Point Theory and Applications, vol. 96, 2013.
J. Z. Xiao, X. H. Zhu, and Y. F. Cao, “Common coupled ﬁxed point results for probabilistic φcontractions in menger spaces,” Nonlinear Anal. Theory Methods Appl., vol. 74, pp. 45894600, 2011.
