IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 1 - Issue 8, September 2012 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Heat Induced Formation Of Peptides From Reaction Mixture Of Glycine - Glutamic Acid And Glycine-Leucine In Presence And Absence Of Montmorillonite Clay With Or Without Metal Ions Under Wetting Drying Cycles Of Primitive Earth

[Full Text]

 

AUTHOR(S)

Kavita Gururani, Chandra Kala Pant, Namrata Pandey, Pramod Pandey

 

KEYWORDS

Keywords:- Prebiotic,diagenesis,biopesis,oligimerisation,spectrophotometer,micromolecules,divalent.

 

ABSTRACT

Abstract:- The effect of heat on the reaction system of glycine - glutamic acid and glycine- leucine at 90 ± 50C has been investigated in aqueous environment in the presence of montmorillonite clay with or without divalent cations (Ca2+, Cu2+ and Mg2+) under prebiotic wetting-drying cycles of primitive earth. The resulting products were analyzed by paper chromatography, UV as well as by High Performance Liquid Chromatography. Formation of peptides seems to depend on the nature of the reactant amino acids, duration of heating as well as on montmorillonite clay incorporated with divalent cations. In glycine/glutamic acid, oligomerization of glycine was limited upto tetramer level (Gly4) along with the formation of glycyl-glutamic acid, whereas reaction system of glycine/leucine gave peptides up to tetramer level (Gly4) and showed the formation of Leucyl-Glycine (Leu- Gly). Thus the formation of peptides from the above reaction system reveal that incorporation of metal ions on clay (M) surface enhance the catalytic activity by ion-dipole interaction of cations with dipolar amino acid Zwitter-ions.

 

REFERENCES

[1] Bernal, J.B.: 1951, The Physical Basis of Life, Rationalist Annual, 148, 3-10.

[2] Basiuk, A.V.; Gromoroy, Ty. And chevskaya, Ea. K.:1995, Origins of life and Evolution of Biosphere, 20, 401.

[3] Bernal, J.D.: 1961, Nature, 190, 129-131.

[4] Bujdak, J. and Rode, B.M.: 1996, J. Mol. Evol. 43, 326.

[5] Bujdak, J.; Slosiarikova, H.; Texler, N.; Schwendinger, M.G. and B. Road : 1998, Mh. Chemie, 125, 1033.

[6] Chang, S.; Flores, J. and Ponnamperuma, C.: 1969, Proc. Natl. Acad. Science. U.S. 64, 1011-1015.

[7] Fox, S.W. and Harada, K.: 1960, J. Amer, Chem. Soc., 82, 3745-3751.

[8] Fox, S.W. and Dose, J.: 1977, Molecular Evolution and the Origin of Life, Marcel Dekker, New York.

[9] Fox, S.W. and Harada, K.: 1960, Arch. Biochem, Biophys. 86, 281.

[10] Fox, S.W. and Harada, K.: 1965, ibid, 109, 49.

[11] Friapiat, J.J.; Cloos, P.; Calius, B. and Makay, K.: 1966, Proceeding of International clay Conference, Israel University Press, Jerusalem, P. 203.

[12] Grim, R.E.: 1968, Clay Mineralogy, Mc- Graw Hill, N.Y.

[13] Kalra, S.; Pant, C.K.; Pathak, H.D.; Mehta, M.S.: 2000, Adeorption of glycine and alanine on montmorillonite with or without co-coordinated divalent cations. Ind. J. Biochem. Biophys. 37, 341-346.

[14] Kalra, S.; Pant, C.K.; Pathak, H.D.; and Mehata, M.S. : 2003, Studies on absorption of peptides of glycine/alanine on montmorillonite clay with or without coordinated divalent cations. Colloids Surf. A: Physiochem. Eng. Asp. 212, 43-50.

[15] Lawless, L.G. and Levi, N.: 1979, J. Mol. Evol. 13, 281.

[16] Lahav, N.; White, D. and Chang, S.: 1978, Science, 201, 67.

[17] Lambert, J.F.: 2008,Adsorption and polymerisation of amino acids on mineral surface: a review. Origins of Life Evol. Biophese 38, 211-242.

[18] Meng. M.; Shtevana, L. and Lambert, J.K.: 2004, Adsorption and thermal condensation mechanism of amino acids on oxide supports. glycine on silica Langmuir 20, 914-923.

[19] Nagayana, M.; Jakoaka, O.; Inomata, K. and Yamagata, Y.: 1990, Origins of Life and Evolution of Biosphere, 20, 249-257.

[20] Oro, J. and Guidry, C.L.: 1961, Arch. Biochem. Biophys., 93, 166.

[21] Ponnamperma, C. Lemmon, R.M.; Mariner, R. and Calvin, M.: 1963, Proc. Natl. Acad. Sci. U.S.A. 49, 737.

[22] Paecht-Horowitz; M. Berger, M. and Katchalsky, A.: 1970, Nature, 228, 637.

[23] de, Pavia, L.B.; Morales, A.R. and Diaz, F.R.V.: 2008, Organoclays: Properties, preparation and applications. Appl. Clay. Sci. 42, 8-24.

[24] Rao, M.; Odom, D.G. and Oro. J.: 1980, J. Mol. Evol. 15, 317.

[25] Rohlfing, D.L. and Mc. Alhaney, W.W.: 1976, Biosystems, 8, 139.

[26] Rode, B.M. and Schwendinger, M.G.: 1990, Origins Life. Evol. Biosphere, 20, 401.

[27] Raki, V.S.: 1989, Fiz. Khim. Mekh. Liofil’nost Dipernikh. Sist. 20, 66.

[28] Theng, B.K.G.: 1974, The chemistry of Clay-Organic Reactions, Hilger, Bristol.

[29] Warden, J.T. and Erickson, J.C.: 1980, J. Mol. Evol. 17, 19.

[30] White, D.H. and Erickson, J.C.: 1980, J. Mol. Evol. 17, 19.

[31] White house, C. et.al.: 2005, Adsorption and self assembly of peptides on mica substrates. Angew. Chem. Int. Ed. 44, 1965-1968.

[32] Yanagawa, H. and Jojima, K.: 1985, J. Biochem. 97, 1521.
[33] Yanagawa, J.; Inomata, K. and Yamagata, Y.: 1998, Origins of Life. Evol. Biosphere, 18, 165.

[34] Yanagawa, H. and Kobayashi, K.: 1992, Origins Life. Evol. Biosphere, 22, 147.

[35] Yanagawa, H. and Kojima, K.: 1985, J. Biochem. 97, 1521.

[36] Zaia, D.A.M.: 2004, A review of adsorption of amino acids on minerals Was it important of the origin olife? Amino Acids 27, 113-118.