IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 2- Issue 12, December 2013 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Mathematical Analysis Of The Endemic Equilibrium Of Thetransmission Dynamics Of Tuberculosis.

[Full Text]

 

AUTHOR(S)

Kalu A. Ugwa , Agwu I. A., Agbanyim Akuagwu N.

 

KEYWORDS

Index Terms: Transmission Dynamics, Basic Reproduction Number, Endemic Equilibrium State, Latent Class, Infectious Class, Susceptible Class.

 

ABSTRACT

Abstract: In this study, we modeled the effect of vaccination and treatment on the transmission dynamics of Tuberculosis (TB). The analysis of the Endemic equilibrium state of the model, using the Basic Reproduction number, Ro shows that TB can effectively be controlled or even be eradicated if effort is made to ensure that the total removal rate from both the Latent and the Infectious classes is always less than the product of total contraction and total breakdown of the Susceptible class.

 

REFERENCES

[1]. P.V. Acharya and D.S Goldman (1970).“Chemical composition of the cell all of the H37Ra strain of Mycobacterium tuberculosis.” (http://www.ncbi.nlm.nih.gov|pumed|4988039).

[2]. T. Atkins, (2008). “Modeling Transmission Dynamics of Tuberculosis, Including various latent periods”. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Mathematics in the college of sciences at the University of Central Florida, Orlando Florida USA.

[3]. S. M. Blower ,A.R McLean ,T.C Porco ;P.M Small;P.C Hopewel ;M.A Sanchez and A.R Moss (1995). “The Intrinsic transmission dynamics of tuberculosis epidemics”: Nature Medicine (8): 815 – 821.

[4]. S.M.Blower ,P.M. Small and P.C.Hopewell (1996). “Control strategies for Tuberculosis epidemics: new models for old problems.” Science, 273 (5274): 497 – 500.

[5]. P.JBrennan and H. Nikaido. (1995). “The envelope of mycobateria”. Annu. Rev. Biochem. 64 : 29 – 63. (http:// www.ncbi.nlm.nih.gov|Pubmed|7574484).

[6]. Centers for Disease Control and Prevention (CDC) (2000).“ Emergence of mycobacterium tuberculosis with extensive resistance to second line drugs – worldwide, 2000 - 2004” (http://www.ncbi.nlm.nih.gov|pubmed|16557213).

[7]. C.Colijn., T.Cohen and M. Murray (2006). “Mathematical models of Tuberculosis: Accomplishments and Future Challenges”. ( http://www.Medscape.com).

[8]. J.A.Diekmann, , P.Heesterbeek and Metz J.A.J (1990). “On the definition and the computation of the basic reproduction ratio, Ro in models for infectious diseases in heterogeneous populations.” Mathematical Biosciences, 28: 363 – 382.

[9]. A.I.Enagi, and M.O.Ibrahim, (2011).”A mathematical Model of Effect of Bacillus Calmette-Guérin Vaccine and Isoniazid Preventive Therapy in Controlling the Spread of Tuberculosis in Nigeria.” Journal of Modern Mathematics and Statistics 5(1): 25 – 29.

[10]. Z.Feng,;W. Huang and C. Castillo-Chavez, (2001). “On the role of variable latent periods in mathematical models for tuberculosis.” Journal of Dynamics and Differential Equations, 13(2) : 425 – 452.

[11]. D.Migliore : N.P.V. Acharya P. Jolles (1966). “Characterization of large quantities of glutamic acid in the walls of human virulent strains of mycobacteria”. (http://www.ncbi.nlm.nih.gov|pubmed|4958543).

[12]. E.Okyere, (2007). “Deterministic Compartmental models for HIV and TB. African Institute for Mathematical Sciences”. http://resources.aim.ac.za/archive/2006/eric.pdf.

[13]. G.G.Sanga, (2008). “Modeling the role of Diagnosis and Treatment on Tuberculosis (TB) Dynamics.” A thesis submitted in partial fulfillment of a post graduate diploma at African Institute for mathematical Sciences (AIMS).

[14]. A.Ssematimba ;J.Y.T.Mugisha, and L.S Luboobi, (2005). “Mathematical models for the dynamics of tuberculosis in density dependent populations: The case of internally displaced peoples’ camps (IDPCS) in Uganda.” Journal of Mathematics and Statistics 1(3): 217 – 224.

[15]. United State Embassy in Nigeria (USEN) (2012). “Nigeria. Tuberculosis Fact Sheet” (http://nigeria.usembassy.gov )

[16]. World Health Organization. (2007) “ “Tuberculosis” http://who.int/mediacentre/factsheets/fs104/en/index.html.Retreived 12 November 2009.