IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 3- Issue 9, September 2014 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Electrodeposition Of Zinc Selenide Films On Different Substrates And Its Characterization

[Full Text]

 

AUTHOR(S)

C.I. Nweze, A. J. Ekpunobi

 

KEYWORDS

Keywords:, Cubic Structure, Grain Sizes, ITO, XRD, Wurzite Structure

 

ABSTRACT

Abstract: Zinc Selenide (ZnSe) thin films have been successfully deposited on two different substrates using electrodeposition method at different time intervals under direct voltage of 3V. XRD pattern of the films deposited on metallic zinc substrates are indexed to cubic crystal structure at all deposition times. The dominant orientation lies on (111) plane of reflection and also more planes of reflection are formed at high deposition time which shows that polycrystalline films were deposited. XRD pattern of the films deposited on the conducting glass (Indium doped Tin Oxide (ITO)) are indexed to wurzite (hexagonal) crystal structure. Investigation reveals that both the film thickness and the grain size of the deposited ZnSe thin films increase with the deposition time for the films deposited on the two substrates. Electrical analysis of the deposited ZnSe thin films showed that the films deposited on the metallic Zinc substrate has lower electrical resistivity than the films deposited on the ITO and the resistivity increases with the increase in the thickness of the deposited films.

 

REFERENCES

1. Yang J., Wang G., Liu H., Park J., and Chen X. (2009). Mater. Chem. Phys. 115, 204-208.

2. Zawani E.L. and Shabani E.L. (2004). J. Solids. 27, 223-232.

3. Jana S., Baek I.C., Lim M.A., and Seoki S.I. (2008). J. Colloid interface Sci. 322, 437 477.

4. Cheng C.L. and Chen Y.F. (2009). Chem. Physics. 115, 158-160.
5. Jiang C, Zhang W., Zou G., Yu W., and Qian Y. (2005). Nanotechnol. 16, 551-554.

6. Monajjemi M. Khaleghian M., Tadayonpour M., and Mollaamin F. (2010). Int. J. Nanosci. 9, 517-529.

7. Gurrappa I and Binder L. (2008). A review, Sci. Technol. Adv. Mater. 9, 1-11.

8. Desphande V.V., Chandra B., Caldwell R., Novikov D.S., Hone J., and Bockrath M. (2008). Science 323, 106 110.

9. El-Sherik A. M, Erb U, Palumbo G and Aust K T (1992). Scr. Metall. Mater. 27, 1185 1192.

10. Cheung C, Palumbo G and Erb U 1994 Scr. Metall. Mater. 32, 735 741.

11. Wong L, Ostrander D, Erb U, Palumbo G and Aust K T 1994 Nanophases and Nanocrystalline Structures ed R D Shull and J M Sanchez (Warrendale, PA: TMS) p 85

12. Erb U, Palumbo G, Zugic R and Aust K T (1996). Proceedings and Properties of Nanocrystalline Materials ed C Suryanarayana, J Singh and F H Froes (Warrendale, PA: TMS) p 9

13. Anuar K., Tan W.T., Dzulkefly K.A., Jelas H., Ho S.M., Shanthi M. and Sarvanan N. (2010). Journal. Kimia. 4, 1 6

14. Ezenwa I.A, Okereke N.A. and Umeokwonna N.S. (2010). Journal of Basic Physical Research 1, 9 12.

15. Okereke N.A. and Ekpunobi A.J. (2011). Journal of Non-oxide glasses. 3, 31-36.

16. Molloamin F., Gharibe S., and Monajjemi M. (2011). International Journal of the Physical science. 6, 1496-15500.