IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 5 - Issue 9, September 2016 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Complex Neurodevelopmental Disorders And Their Genetic Etiologies

[Full Text]

 

AUTHOR(S)

Amna Batool, Mahira Arooj

 

KEYWORDS

Complex Neurodevelopmental disorder (NDD); Intellectual disability (ID); Neurodegenerative diseases; Neurobehavioral traits; Autism spectrum disorders (ASD).

 

ABSTRACT

Complex Neurodevelopmental disorders (NDDs) exhibit complex etiological and genetic features, and the mutations have a fundamental role in this complexity, including common polymorphisms and rare variations in a single gene or cluster of genes. The analysis of complex NDDs have shown that the genetics has the major role in causation of such complex diseases. Interestingly both mutations and polymorphisms are involved, occurring in a single gene or clusters of genes. Likewise, a single gene variation may also be involved in multiple neurological disorders making the diagnosis of neurological diseases more difficult. Many candidate genes and chromosomal regions have been identified that are widely involved in neurological symptoms which necessitates the genotypic approach for describing the phenotype.

 

REFERENCES

[1] W.F. HU, M. Chahrour, and C.A. Walsh, “The diverse genetic landscape of neurodevelopmental disorders,” Annu Rev Genomics Hum Genet, vol. 15, pp. 195–213, Aug. 2014, doi:10.1146/annurev-genom-090413-025600.

[2] H.J. Williams, N. Craddock, G. Russo, M.L. Hamshere, V. Moskvina, and S. Dwyer, “Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries,” Hum Mol Genet, vol. 20, no. 2, pp. 387–391, Jan. 2011, doi:10.1093/hmg/ddq471.

[3] M.E. Talkowski, J.A. Rosenfeld, I. Blumenthal, V. Pillalamarri, C. Chiang, and A. Heilbut, “Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries,” Cell, vol. 149, no. 3, pp. 525–537, Apr. 2012, doi:10.1016/j.cell.2012.03.028. Epub 2012 Apr 19.

[4] K.M. Van Loo and G.J. Martens, “Genetic and Environmental Factors in Complex Neurodevelopmental Disorders,” Current Genomics, vol. 8, no. 7, pp. 429–444, Aug. 2007, doi:10.2174/138920207783591717.

[5] K.T. Jones and S.I.R. Lane, “Molecular causes of aneuploidy in mammalian eggs,” Primer, vol. 140, no. 18, pp. 3719–3730, Sep. 2013, doi:10.1242/dev.090589.

[6] C.J. Epstein, “Down syndrome (Trisomy 21),” In: C.R. Scriver, A.L. Beaudet, W.S. Sly, and Valle D, eds., The Metabolic & Molecular Bases of Inherited Disease, McGraw Hill; New York, pp. 1223-1256, 2001.

[7] S.E. Antonarakis, R. Lyle, E.T. Dermitzakis, A. Reymond, and S. Deutsch, “Chromosome 21 and Down syndrome: from genomics to pathophysiology,” Nat Rev Genet, vol. 5, no. 10, pp. 725–738, Oct. 2004.

[8] P.M. Sinet, D. Theopile, Z. Rahmani, Z. Chettouch, J.L. Blovin, and M. Prier, “Mapping of Down syndrome phenotype on chromosome 21 at the molecular level,” Biomed Pharmacother, vol. 48, no. 5, pp. 247–252, 1994.

[9] A. Asim, A. Kumar, S. Muthuswamy, S. Jain, and S. Agarwal, “Agarwal Down syndrome: an insight of the disease,” J Biomed Sci, vol. 22, pp. 41, Jun. 2015, doi: 10.1186/s12929-015-0138-y.

[10] L.G. Shaffer, D.H. Ledbetter, and J.R. Lupski, “Molecular cytogenetics of contiguous gene syndromes:mechanisms and consequences of gene dosage imbalance,” In: C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, B. Childs, K.W. Kinzler, B. Vogelstein, eds., Metabolic and molecular basis of inherited disease, McGraw Hill; New York, pp. 1291-1324, 2001.

[11] A. Vogels and J.P. Fryns, “Microdeletions and Molecular Genetics.,”Atlas Genet Cytogenet Haematol Oncol, available at URL:http://AtlasGeneticsOncology.org/Educ/MicrodeletionID30059ES.html , Feb. 2004.

[12] A. Horsthemke and J. Wagstaff, “Mechanisms of imprinting of the Prader-Willi/Angelman region,” Am J Med Genet A, vol. 146A, no. 16, pp. 2041-2052, Aug. 2008, doi:10.1002/ajmg.a.32364.

[13] L.A. Laan, W.O. Renier, W.F. Arts, I.M. Buntinx, I.J. Vd Burgt, H. Stroink, J. Beuten, K.H. Zwinderman, J.G. Van Dijk, and O.F. Brouwer, “Evolution of epilepsy and EEG findings in Angelman syndrome,” Epilepsia, vol. 38, no. 2, pp. 195–199, Feb. 1997.

[14] B. Suzanne, M.D. Cassidy, S. Schwartz, L. Jennifer, M.D. Miller, and M.D. Driscol, “Prader-Willi syndrome,” Genet Med, vol. 14, no. 1, pp.10-26, Sep. 2012, doi:10.1038/gim.0b013e31822bead0.

[15] S. Girirajan, C.N. Vlangos, B.B. Szomju, E. Edelman, C.D .Trevors, and L. Dupuis, “Genotype-phenotype correlation in Smith-Magenis syndrome: evidence that multiple genes in 17p11.2 contribute to the clinical spectrum,” Genet Med, vol. 8, no. 7, pp. 417–427, Jul. 2006.

[16] N. Liburd, M. Ghosh, S. Riazuddin, S. Naz, S. Khan, and Z. Ahmed, “Novel mutations of MYO15A associated with profound deafness in consanguineous families and moderately severe hearing loss in a person with Smith-Magenis syndrome,” Hum Genet, vol. 109, no. 5, pp. 535–541, Nov. 2001.

[17] A. Moncla, L. Piras, O.F. Arbex, F. Muscatelli, M.G. Mattei, and J.F .Mattei, “Physical mapping of microdeletions of the chromosome 17 short arm associated with Smith-Magenis syndrome,” Hum Genet, vol. 90, no. 6, pp. 657–660, Feb. 1993.

[18] N. Tomona, A.C. Smith, J.P. Guadagnini, and T.C. Hart, “Craniofacial and dental phenotype of Smith-Magenis syndrome,” Am J Med Genet A, vol. 140, no. 23, pp. 2556-2561, Dec. 2006.

[19] L. Mariannejensen and M. Kirchhoff, “Polydactyly in a boy with Smith-Magenis syndrome,” Clin Dysmorphol, vol. 14, no. 4, pp. 189–190, Oct. 2005.

[20] I.C. Chou, F.J. Tsai, M.T. Yu, and C.H. Tsai, “Smith-Magenis syndrome with bilateral vesicoureteral reflux: a case report,” J Formos Med Assoc, vol. 101, no. 10, pp. 726–728, Oct. 2002.

[21] A.C .Smith, A.L. Gropman, J.E. Bailey-Wilson, O. Goker-Alpan, S.H. Elsea, and J. Blancato “Hypercholesterolemia in children with Smith-Magenis syndrome: del (17) (p11.2p11.2.),” Genet Med, vol. 4, no. 3, pp. 118–125, Jun. 2002.

[22] A. Poisson, A. Nicolas, P. Cochat, D. Sanlaville, C. Rigard, H. Leersnyder, P. Franco, V.D. Portes, P. Edery, and C. Demily, “Behavioral disturbance and treatment strategies in Smith-Magenis syndrome,” Orphanet J Rare Dis, vol. 10, pp. 111, Sep. 2015, doi:10.1186/s13023-015-0330-x.

[23] R.J. Shprintzen, “Velo-cardio-facial syndrome: 30 Years of study,” Dev Disabil Res Rev, vol. 14, no. 1, pp. 3-10, Mar. 2008, doi:10.1002/ddrr.2.

[24] R.J. Shprintzen, R.B. Goldberg, D. Young, and L. Wolford, “The velo-cardio-facial syndrome: a clinical and genetic analysis,” Pediatrics, vol. 67, no. 2, pp. 167-172, Feb. 1981.

[25] B. Gilbert-Dussardier, “Williams-Beuren syndrome,” Praticien, vol. 56, no. 19, pp. 2102-2106, Dec. 2006.

[26] R.J. Gibbons, D.J. Picketts, L. Villard, and D.R. Higgs, “Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome),” Cell, vol. 80, no. 6, 837-845, Mar. 1995.

[27] D.J. Picketts, D.R. Higgs, S. Bachoo, D.J. Blake, O.W. Quarrell, and R.J. Gibbons, “ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome,” Hum Mol Genet, vol. 5, no. 12, pp. 1899-1907, Dec. 1996.

[28] S. Xie, Z. Wang, M. Okano, M. Nogami, Y. Li, W.W. He, K. Okumura, and E. Li, “Cloning, expression and chromosome locations of the human DNMT3 gene family,” Gene, vol. 236, no. 1, pp. 87-95, Aug. 1999.

[29] R.J. Gibbons and D.R. Higgs, “Molecular-clinical spectrum of the ATR-X syndrome,” Am J Med Genet, vol. 97, no. 3, pp. 204-212, Sep. 2000, doi:10.1002/1096-8628(200023)97:3<204::AID-AJMG1038>3.0.CO;2-X

[30] R Gibbons, “Alpha thalassaemia-mental retardation, X linked,” Orphanet J Rare Dis, vol. 1, pp. 15, May 2006.

[31] S.L.N. Clarke, A. Bowron, I.L. Gonzalez, S.J. Groves, R. Newbury-Ecob, N. Clayton, R.P. Martin, B. Tsai-Goodman, V. Garratt, M. Ashworth, V.M. Bowen, K.R. McCurdy, M.K. Damin, C.T. Spencer, M.J. Toth, I.R. Kelley, and C.J. Steward, “Barth syndrome,” Orphanet J Rare Dis, vol. 8: pp. 23, Feb. 2013, doi: 10.1186/1750-1172-8-23.

[32] A. Stembalska, I. Łaczmańska, J. Gil, and K.A. Pesz, “Fragile X syndrome in females - a familial case report and review of the literature,” Dev Period Med, vol. 20, no. 2, pp. 99-104, Apr-Jun. 2016.

[33] R. Lozano, C.A. Rosero, and R.J. Hagerman, “Fragile X spectrum disorders,” Intractable Rare Dis Res, vol. 3, no. 4, pp. 134-146, Nov. 2014, doi:10.5582/irdr.2014.01022.

[34] J.S. Sutcliffe, D.L. Nelson, F. Zhang, M. Pieretti, C.T. Caskey, and D. Saxe, “DNA methylation represses FMR-1 transcription in fragile X syndrome,” Hum Mol Genet, vol. 1, no. 6, pp. 397–400, Sep. 1992.

[35] C. Bagni, F. Tassone, G. Neri, and R. Hagerman, “Fragile X syndrome: Causes, diagnosis, mechanisms, and therapeutics,” J Clin Invest, vol. 122, no. 12, pp. 4314–4322, Dec. 2012, doi:10.1172/JCI63141.

[36] J. Tolmie, “Fragile X Syndrome Diagnosis, Treatment, and Research,” R.J. Hagerman and P.J. Hagerman eds., Baltimore: The John Hopkins University Press, pp. 782-783, 2002.

[37] Fernandez-Carvajal, P.B. Lopez, R. Pan, C. Raske, P.J. Hagerman, and F. Tassone, “Expansion of an FMR1 grey-zone allele to a full mutation in two generations,” J Mol Diagn, vol. 11, no.4, pp. 306–310, Jul. 2009, doi:10.2353/jmoldx.2009.080174. Epub 2009 Jun 12.

[38] W. Saldarriaga, F. Tassone, L.Y. González-Teshima, J.V. Forero-Forero, S. Ayala-Zapata, and R. Hagerman, “Fragile X Syndrome,” Colomb Med (Cali), vol. 45, no. 4, pp. 190–198, Dec. 2014.

[39] M Ehrlich, K Jackson, and C Weemaes, “Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF),” Orphanet J. Rare Dis, vol. 1, pp. 2, Mar. 2006.

[40] M. Okano, D.W. Bell, D.A. Haber, and E. Li, “DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development,” Cell, vol. 99, no. 3, pp. 247-257, Oct. 1999.

[41] R.S. Hansen, C. Wijmenga, P. Luo, A.M. Stanek, T.K. Canfield, C.M. Weemaes, and S.M. Gartler, “The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome,” Proc Natl Acad Sci U S A, vol. 96, no. 25, pp. 14412-14417, Dec. 1999.

[42] G.L. Xu, T.H. Bestor, D. Bourc’his, C.L. Hsieh, N. Tommerup, M. Bugge, M. Hulten, X. Qu, J.J. Russo, and E. Viegas-Pequignot, “Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene,” Nature, vol. 402, no. 6758, pp. 187-191, Nov. 1999.

[43] M. Okano, D.W. Bell, D.A. Haber, and E. Li, “DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development,” Cell, vol. 99, no. 3, pp. 247-257, Oct. 1999.

[44] D.F. Smeets, U. Moog, C.M. Weemaes, G. Vaes-Peeters, G.F. Merkx, J.P. Niehof, and G. Hamers, “ICF syndrome: a new case and review of the literature,” Hum Genet, vol. 94, no. 3, pp. 240-246, Sep. 1994.

[45] M. Ehrlich, “The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease,” Clin Immunol, vol. 109, no. 1, pp. 17-28, Oct. 2003.

[46] T.M. Geiman, U.T. Sankpal, A.K. Robertson, Y. Chen, M. Mazumdar, J.T. Heale, J.A. Schmiesing, W. Kim, K. Yokomori, and Y. Zhao, “Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery,” Nucleic Acids Res, vol. 32, no. 9, pp. 2716-2729, May 2004.

[47] B. Jin, Q. Tao, J. Peng, H.M. Soo, W. Wu, C. Ying, C.R. Fields, A.L. Delmas, X. Liu, J. Qiu, and D.K. Robertson, “DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function,” Hum Mol Genet, vol. 17, no. 5, pp. 690-709, Mar. 2008.

[48] K. Jett and J.M. Friedman, “Clinical and genetic aspects of neurofibromatosis 1,” Genet Med, vol. 12, no. 1, pp. 1–11, Jan. 2010, doi: 10.1097/GIM.0b013e3181bf15e3.

[49] D.G. Evans, “Neurofibromatosis type 2 (NF2): a clinical and molecular review,” Orphanet J Rare Dis, vol. 4, pp. 16, Jun. 2009, doi: 10.1186/1750-1172-4-16.

[50] C.A. Wassif, C. Maslen, S. Kachilele-Linjewile, D. Lin, L.M. Linck, W.E. Connor, R.D. Steiner, and F.D. Porter, “Mutations in the human sterol delta7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome,” Am J Hum Genet, vol. 63, no. 1, pp. 55-62, Jul. 1998.

[51] E. Tierney, N.A. Nwokoro, F.D. Porter, L.S. Freund, J.K. Ghuman, and RI Kelley, “Behavior phenotype in the RSH/Smith-Lemli-Opitz syndrome,” Am J Med Genet, vol. 98, no. 2, pp. 191–200, Jan. 2001.

[52] D.M. Sikora, K. Pettit-Kekel, J. Penfield, L.S. Merkens, and R.D. Steiner, “The near universal presence of autism spectrum disorders in children with Smith-Lemli-Opitz syndrome,” Am J Med Genet A, vol. 140, no. 14, pp. 1511–1518, Jul. 2006.

[53] F.D. Porter, “Smith–Lemli–Opitz syndrome: pathogenesis, diagnosis and management,” Eur J Hum Genet, vol. 16, no. 5, pp. 535-541, May 2008, doi: 10.1038/ejhg.2008.10.

[54] K. Bomsztyk, O. Denisenko, J. Ostrowski, “hnRNP K: one protein multiple processes,” Bioessays, vol. 26, no. 6, pp. 629–638, Jun. 2004.

[55] P Barboro, N Ferrari, and C Balbi, “Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression,” Cancer Lett, vol. 352, no. 2, pp. 152–159, Oct. 2014, doi:10.1016/j.canlet.2014.06.019.

[56] P.Y.B. AU, Y. Jing, O. Caluseriu, J. Schwartzentruber, J. Majewski, F.P. Bernier, M. Ferguson, D. Valle, J.S. Parboosingh, N. Sobreira, A.M. Innes, and A.D. Kline, “GeneMatcher Aids in the Identification of a New Malformation Syndrome with Intellectual Disability, Unique Facial Dysmorphisms, and Skeletal and Connective Tissue Abnormalities Caused by De Novo Variants inHNRNP,” Human Mutation, vol. 36, no. 10, pp. 1009–1014, Oct. 2015.

[57] A.J. Barkovich, R. Guerrini, R.I. Kuzniecky, G.D. Jackson, and W.B. Dobyns, “A developmental and genetic classification for malformations of cortical development,” Brain, vol. 135, pp. 1348–1369, May 2012, doi:10.1093/brain/aws019.

[58] A.J. Barkovich, R.I. Kuzniecky, G.D. Jackson, R. Guerrini, and W.B. Dobyns, “A developmental and genetic classification for malformations of cortical development,” Neurology, vol. 65, no.12, pp. 1873–1887, Dec. 2005.

[59] T.D. Cushion, W.B. Dobyns, J.G. Mullins, N. Stoodley, S.K. Chung, A.E. Fry, U. Hehr, R. Gunny, A.S. Aylsworth, and P. Prabhakar, “Overlapping cortical malformations and mutations in TUBB2B and TUBA1A,” Brain, vol. 136, pp. 536–548, Feb. 2013, doi:10.1093/brain/aws338.

[60] R.A. Kumar, D.T. Pilz, T.D. Babatz, T.D. Cushion, K. Harvey, M. Topf, L. Yates, S. Robb, G. Uyanik, and G.M. Mancini, “TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins,” Hum Mol Genet, vol. 19, no. 14, pp. 2817–2827, Jul. 2010, doi:10.1093/hmg/ddq182

[61] D. Amrom, I. Tanyalçin, H. Verhelst, N. Deconinck, G. Brouhard, J.C. Décarie, T. Vanderhasselt, S. Das, F.F. Hamdan, W. Lissens, J.L. Michaud, and A.C. Jansen, “Polymicrogyria with dysmorphic basal ganglia? Think tubulin!,” Clin Genet, vol. 85, no.2, pp. 178-183, Feb. 2014, doi: 10.1111/cge.12141.

[62] D.A. Keays, G. Tian, K. Poirier, G.J. Huang, C. Siebold, J. Cleak, P.L. Oliver, M. Fray, R.J. Harvey, Z. Molnár, M.C. Piñon, N. Dear, W. Valdar, S.D. Brown, K.E. Davies, J.N. Rawlins, N.J. Cowan, P. Nolan, J. Chelly, and J. Flint, “Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans,” Cell, vol. 128, no. 1, pp. 45–57, Jan. 2007.

[63] X.H. Jaglin, K. Poirier, Y. Saillour, E. Buhler, G. Tian, N. Bahi-Buisson, C. Fallet-Bianco, F. Phan-Dinh-Tuy, X.P. Kong, P. Bomont, L. Castelnau-Ptakhine, S. Odent, P. Loget, M. Kossorotoff, I. Snoeck, G. Plessis, P. Parent, C. Beldjord, C. Cardoso, A. Represa, J. Flint, D.A. Keays, N.J. Cowan, and J. Chelly, “Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria,” Nat Genet, vol. 41, no. 6, pp. 746–752, Jun. 2009, doi:10.1038/ng.380.

[64] K. Poirier, Y. Saillour, N. Bahi-Buisson, X.H. Jaglin, C. Fallet-Bianc, R. Nabbout, L. Castelnau-Ptakhine, A. Roubertie, T. Attie-Bitach, I. Desguerre, D. Genevieve, C. Barnerias, B. Keren, N. Lebrun, N. Boddaert, F. Encha-Razavi, and J. Chelly, “Mutations in the neuronal ß-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects,” Hum Mol Genet, vol. 19, no. 22, pp. 4462–4473, Nov. 2010. doi:10.1093/hmg/ddq377

[65] M.R. Abdollahi, E. Morrison, T. Sirey, Z. Molnar, B.E. Hayward, I.M. Carr, K. Springell, C.G. Woods, M. Ahmed, L. Hattingh, P. Corry, D.T. Pilz, N. Stoodley, Y. Crow, GR. Taylor, D.T. Bonthron, and E. Sheridan, “Mutation of the variant alpha-tubulin TUBA8 results in polymicrogyria with optic nerve hypoplasia,” Am J Hum Genet, vol. 85, no. 5, pp. 737–744, Nov. 2009, doi: 10.1016/j.ajhg.2009.10.007.

[66] M. Breuss, J.I. Heng, K. Poirier, G. Tian, XH. Jaglin, Z. Qu, A. Braun, T. Gstrein, L. Ngo, M. Haas, N. Bahi-Buisson, M.L. Moutard, S. Passemard, A. Verloes, P. Gressens, Y. Xie, K.J. Robson, D.S. Rani, K. Thangaraj, T. Clausen, J. Chelly, N.J. Cowan, and D.A. Keays, “Mutations in the β-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities,” Cell Rep, vol. 2, no. 6, pp. 1554–1562, Dec. 2012, doi:10.1016/j.celrep.2012.11.017.

[67] C. Simons, N.I. Wolf, N. McNeil, L. Caldovic, J.M. Devaney, A. Takanohashi, J. Crawford, K. Ru, S.M. Grimmond, D. Miller, D. Tonduti, J.L. Schmidt, R.S. Chudnow, R. van Coster, L. Lagae, J. Kisler, J. Sperner, M.S. van der Knaap, R. Schiffmann, R.J. Taft, and A. Vanderver, “A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum,” Am J Hum Genet, vol. 92, no. 5, pp. 767–773, May 2013, doi:10.1016/j.ajhg.2013.03.018.

[68] K. Poirier, N. Lebrun, L. Broix, G. Tian, Y. Saillour, C. Boscheron, E. Parrini, S. Valence, B.S. Pierre, M. Oger, D. Lacombe, D. Geneviève, E. Fontana, F. Darra, C. Cances, M. Barth, D. Bonneau, B.D. Bernadina, S. N'guyen, C. Gitiaux, P. Parent, V. des Portes, J.M. Pedespan, V. Legrez, L. Castelnau-Ptakine, P. Nitschke, T. Hieu, C. Masson, D. Zelenika, A. Andrieux, F. Francis, R. Guerrini, N.J. Cowan, N. Bahi-Buisson, and J. Chelly, “Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly,” Nat Genet, vol. 45, no. 6, pp. 639–647, Jun. 2013, doi:10.1038/ng.2613.

[69] T.D. Cushion, A.R. Paciorkowski, D.T. Pilz, J.G. Mullins, L.E. Seltzer, R.W. Marion, E. Tuttle, D. Ghoneim, S.L. Christian, S.K. Chung, M.I. Rees, and W.B. Dobyns, “De novo mutations in the beta-tubulin gene TUBB2A cause simplified gyral patterning and infantile-onset epilepsy,” Am J Hum Genet, vol. 94, no. 4, pp. 634-41, Apr. 2014, doi:10.1016/j.ajhg.2014.03.009.

[70] C. Pantelis, M. Yucel, S.J. Wood, P.D. McGorry, and D. Velakoulis, “Early and late neurodevelopmental disturbances in schizophrenia and their functional consequences,” Aust N Z J Psychiatry, vol. 37, no. 4, pp. 399-406, Aug. 2003, doi: 10.1046/j.1440-1614.2003.01193.x.

[71] C.J. Carter, “eIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia?,” Schizophr Bull, vol. 33, no. 6, pp. 1343-1353, Nov. 2007, doi:10.1093/schbul/sbm007.

[72] M. Karayiorgou and J.A. Gogos, “The molecular genetics of the 22q11-associated schizophrenia,” Brain Res Mol Brain Res, vol. 132, no. 2, pp. 95-104, Dec. 2004.

[73] T. Kircher, A. Krug, V. Markov, C. Whitney, S. Krach, K. Zerres, T. Eggermann, T. Stocker, N.J. Shah, J. Treutlein, M.M. Nöthen, T. Becker, and M. Rietschel, “Genetic variation in the schizophrenia-risk gene neuregulin 1 correlates with brain activation and impaired speech production in a verbal fluency task in healthy individuals,” Hum Brain Mapp, vol. 30, no. 10, pp. 3406-16, Oct. 2009, doi:10.1002/hbm.20761.

[74] N.M. Fournier, H.J. Caruncho, and L.E. Kalynchuk, “Decreased levels of disrupted-in-schizophrenia 1 (DISC1) are associated with expansion of the dentate granule cell layer in normal and kindled rats,” Neurosci Lett, vol. 455, no. 2, pp. 134-139, 2009.

[75] T. Takahashi, M. Suzuki, M. Tsunoda, N. Maeno, Y. Kawasaki, S.Y. Zhou, H. Hagino, L. Niu, H. Tsuneki, S. Kobayashi, T. Sasaoka, H. Seto, M. Kurachi, and N. Ozaki, “The Disrupted-in-Schizophrenia-1 Ser704Cys polymorphism and brain morphology in schizophrenia,” Psychiatry Res, vol. 172, no. 2, pp. 128-135, May 2009, doi: 10.1016/j.pscychresns.2009.01.005.

[76] O. Fedorenko, N. Strutz-Seebohm, U. Henrion, O.N. Ureche, F. Lang, G. Seebohm, and U.E. Lang, “A schizophrenia-linked mutation in PIP5K2A fails to activate neuronal M channels,” Psychopharmacology (Berl), vol. 199, no. 1, pp. 47-54, Jul. 2008, doi:10.1007/s00213-008-1095-x

[77] S.E. Lakhan and K.F. Vieira, “Schizophrenia pathophysiology: are we any closer to a complete model?,” Ann Gen Psychiatry, vol. 8, pp. 12, May 2009, doi:10.1186/1744-859X-8-12.

[78] J. Schumacher, P. Hoffmann, C. Schmäl, G.S. Körne, M.M. Nöthen, “Genetics of dyslexia: the evolving landscape,” J Med Genet, vol. 44, no. 5, pp. 289-297, May 2007.

[79] R Pauc, “Comorbidity of dyslexia, dyspraxia, attention deficit disorder (ADD), attention deficit hyperactive disorder (ADHD), obsessive compulsive disorder (OCD), and tourette’s syndrome in children: A prospective epidemiological study,” Clinical Chiropractic, vol. 8, no. 4, pp. 189–198, Dec. 2005.

[80] L.S. Siegel, “Perspectives on dyslexia,” Paediatr Child Health, vol. 11, no. 9, pp. 581–587, Nov 2006.

[81] M.L. Bosse, M.J. Tainturier, S. Valdois, “Developmental dyslexia: The visual attention span deficit hypothesis,” Cognition, vol. 104, no. 2, pp. 198–230, Aug. 2007.

[82] C. Peyrin, M. Lallier, J.F. Démonet, M. Baciu, J.F. Le Bas, and S. Valdois, “Neural dissociation of phonological and visual attentional span disorders in developmental dyslexia: fMRI evidence from two case reports,” Brain Lang, vol. 120, no. 3, pp. 381–394, Mar. 2012, doi:10.1016/j.bandl.2011.12.015.

[83] R. Zoubrinetzky, F. Bielle, and S. Valdois, “New insights on developmental dyslexia subtypes: heterogeneity of mixed reading profiles,” PLoS One, vol. 9, no. 6, e99337, Jun. 2014, doi:10.1371/journal.pone.0099337

[84] J. Dilnot, L. Hamilton, B. Maughan, and M.J. Snowling, “Child and environmental risk factors predicting readiness for learning in children at high risk of dyslexia,” Dev Psychopathol, vol. 22, pp. 1-10, Feb. 2016.

[85] M.J. Kjeldsen, K.O. Kyvik, M.L. Friis, and K. Christensen, “Genetic and environmental factors in febrile seizures: a Danish population-based twin study,” Epilepsy Res, vol. 51, no. 1-2, pp. 167–77, Sep. 2002.

[86] E.W. Johnson, J. Dubovsky, S.S. Rich, C.A. O'Donovan, H.T. Orr, V.E. Anderson, A. Gil-Nagel, P. Ahmann, C.G. Dokken, D.T. Schneider, and J.L. Weber, “Evidence for a novel gene for familial febrile convulsions, FEB2, linked to chromosome 19p in an extended family from the Midwest,” Hum Mol Genet, vol. 7, no. 1, pp. 63–67, Jan. 1998.

[87] J. Nakayama, N. Yamamoto, K. Hamano, N. Iwasaki, M. Ohta, S. Nakahara, A. Matsui, E. Noguchi, T Arinami, “Linkage and association of febrile seizures to the IMPA2 gene on human chromosome 18,” Neurology, vol. 63, no. 10, pp. 1803–1807, Nov. 2004.

[88] M. Feucht, K. Fuchs, E. Pichlbauer, K. Hornik, J. Scharfetter, R. Goessler, T. Fureder, N. Cvetkovic, W. Sieghart, S. Kasper, and H. Aschauer, “Possible association between childhood absence epilepsy and the gene encoding GABRB3,” Biol Psychiatry, vol. 46, no. 7, pp. 997–1002, Oct. 1999.

[89] O. Steinlein, T. Sander, J. Stoodt, R. Kretz, D. Janz, and P. Propping, “Possible association of a silent polymorphism in the neuronal nicotinic acetylcholine receptor subunit alpha4 with common idiopathic generalized epilepsies” Am J Med Genet, vol. 74, no. 4, pp. 445–449, Jul. 1997.

[90] K. Kanemoto, J. Kawasaki, T. Miyamoto, H. Obayashi, and M, Nishimura, “Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy,” Ann Neurol, vol. 47, no. 5, pp. 571–574, May 2000.

[91] F.J. Tsai, Y.Y. Hsieh, C.C. Chang, C.C. Lin, and C.H. Tsai, “Polymorphisms for interleukin 1 beta exon 5 and interleukin 1 receptor antagonist in Taiwanese children with febrile convulsions,” Arch Pediatr Adolesc Med, vol. 156, no. 6, pp. 545–548, Jun. 2002.

[92] S. Baulac, G. Huberfeld, I. Gourfinkel-An, G. Mitropoulou, A. Beranger, J.F. Prud'homme, M. Baulac, A. Brice, R. Bruzzone, and E LeGuern, “First genetic evidence of GABA(A) receptor dysfunction in epilepsy a mutation in the gamma2-subunit gene,” Nat Genet, vol. 28, no. 1, pp. 46–48, May 2001.

[93] K.M. Van Loo and G.J. Martens, “Genetic and Environmental Factors in Complex Neurodevelopmental Disorders,” Current Genomics, vol. 8, no. 7, pp. 429–444, Aug. 2007, doi:10.2174/138920207783591717.

[94] J. Biederman, J. Newcorn, and S. Sprich, “Comorbidity of attention deficit hyperactivity disorder with conduct, depressive, anxiety, and other disorders,” Am J Psychiatry, vol. 148, no. 5, pp. 564–577, May 1991.

[95] H.R. Bird, M.S. Gould, and B.M. Staghezza, “Patterns of diagnostic comorbidity in a community sample of children aged 9 through 16 years,” J Am Acad Child Adolesc Psychiatry, vol. 32, no. 2, pp. 361–368, Mar. 1993.

[96] C. Sanchez-Mora, M. Ribases, F. Mulas, C. Soutullo, A. Sans, M. Pamias, M. Casas, and J.A. Ramos-Quiroga, “Genetic bases of attention deficit hyperactivity disorder,” Rev Neurol, vol. 55, no. 10, pp. 609-18, Nov. 2012.

[97] J. Elia and M. Devoto, “ADHD genetics: 2007 update,” Curr Psychiatry Rep, vol. 9, no. 5, pp. 434-439, Oct. 2007.

[98] C. Ecker, A. Marquand, J. Mourão-Miranda, P. Johnston, E.M. Daly, M.J. Brammer, S. Maltezos, C.M. Murphy, D. Robertson, S.C. Williams, and D.G. Murphy, “Describing the Brain in Autism in Five Dimensions—Magnetic Resonance Imaging-Assisted Diagnosis of Autism Spectrum Disorder Using a Multiparameter Classification Approach,” J Neurosci, vol. 30, no. 32, pp. 10612-10623, Aug. 2010, doi:10.1523/JNEUROSCI.5413-09.2010.

[99] S.L. Santangelo and K. Tsatsanis, “What is known about autism: genes, brain, and behavior,” Am J Pharmacogenomics, vol. 5, no. 2, pp. 71-92, 2005.

[100] R. Muhle, S.V. Trentacoste, and I. Rapin, “The genetics of autism,” Pediatrics, vol. 113, no. 5, pp. 472-86, May 2004.

[101] C.J. Newschaffer, L.A. Croen, J. Daniels, E. Giarelli, J.K. Grether, S.E. Levy, D.S. Mandell, L.A. Miller, J. Pinto-Martin, J. Reaven, A.M. Reynolds, C.E. Rice, D. Schendel, and G.C. Windham, “The epidemiology of ASD” Annu Rev Public Health, vol. 28, pp. 235–258, Apr. 2007.

[102] J.J. Cannell, “Autism, will vitamin D treat core symptoms?,” Med Hypotheses, vol. 81, no. 2, pp. 195–198, Aug. 2013, doi:10.1016/j.mehy.2013.05.004.

[103] C. Curtin, S.E. Anderson, A. Must, and L. Bandini, “The prevalence of obesity in children with autism: a secondary data analysis using nationally representative data from the National Survey of Children's Health,” BMC Pediatrics, vol. 10, pp. 11, Feb. 2010, doi:10.1186/1471-2431-10-11.

[104] Y.H. Neggers, “Increasing Prevalence, Changes in Diagnostic Criteria, and Nutritional Risk Factors for Autism Spectrum Disorders,” ISRN Nutrition, vol. 2014, pp. 14, Feb. 2014, doi:10.1155/2014/514026.

[105] R. Muhle, S.V. Trentacoste, and I. Rapin, “The genetics of autism,” Pediatrics, vol. 113, no. 5, pp. 472-86, May 2004.

[106] J.F. Krey and R.E. Dolmetsch, “Molecular mechanisms of autism: a possible role for Ca2+ signaling,” Curr Opin Neurobiol, vol. 17, no. 1, pp. 112–119, Feb. 2007.

[107] K. Markram, T. Rinaldi, D. La Mendola, C. Sandi, and H. Markram, “Abnormal fear conditioning and amygdala processing in an animal model of autism,” Neuropsychopharmacology, vol. 33, no. 4, pp. 901–912, Mar. 2008.

[108] A.L. Bhakar, G. Dölen, and M.F. Bear, “The pathophysiology of fragile X (and what it teaches us about synapses),” Annu Rev Neurosci, vol. 35, pp. 417–443, Jul. 2012.

[109] W. Perry, A. Minassian, B. Lopez, L. Maron, and A. Lincoln, “Sensorimotor gating deficits in adults with autism,” Biol Psychiatry, vol. 61, no. 4, pp. 482–486, Feb. 2007.

[110] K. Markram and H Markram, “The intense world theory - a unifying theory of the neurobiology of autism,” Front Hum Neurosci, vol. 4, pp. 224, Dec. 2010, doi:10.3389/fnhum.2010.00224.

[111] O. Marín, “Interneuron dysfunction in psychiatric disorders,” Nat Rev Neurosci, vol. 13, no, 2, pp. 107–120, Jan. 2012, doi:10.1038/nrn3155.

[112] B.S. Abrahams and D.H. Geschwind, “Advances in autism genetics: on the threshold of a new neurobiology,” Nat Rev Genet, vol. 9, no.5, pp. 341–355, May 2008, doi:10.1038/nrg2346.

[113] T. Rinaldi, G. Silberberg, and H. Markram, “Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid,” Cereb Cortex, vol. 18, no. 4, pp. 763–770, Apr. 2008.

[114] D.H. Geschwind, “Advances in autism,” Annu Rev Med, vol. 60, pp. 367-380, Feb. 2009, doi:10.1146/annurev.med.60.053107.121225.

[115] J. Peça and G. Feng, “Cellular and synaptic network defects in autism,” Curr Opin Neurobiol,” vol. 22, no. 5, pp. 866–872, Oct. 2012.

[116] K.G. Pratt and A.S. Khakhalin, “Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets,” Dis Model Mech, vol. 6, no. 5, pp. 1057-1065, Sep. 2013, doi:10.1242/dmm.012138.

[117] T. Ylisaukko-oja, T. Nieminen-von Wendt, E. Kempas, S. Sarenius, T. Varilo, L. von Wendt, L. Peltonen, and I. Järvelä, “Genome-wide scan for loci of Asperger syndrome,” Mol Psychiatry, vol. 9, no. 2, pp. 161–168, Feb. 2004.

[118] M. Ghaziuddin and K. Mountain-Kimchi, “Defining the intellectual profile of Asperger Syndrome: comparison with high-functioning autism,” J Autism Dev Disord, vol. 34, no.3, pp. 279-284, Jun. 2004.

[119] F.H. Duffy, A. Shankardass, G.B. McAnulty, and H. Als, “The relationship of Asperger’s syndrome to autism: a preliminary EEG coherence study,” BMC Med, vol. 11, pp. 175, Jul. 2013, doi:10.1186/1741-7015-11-175.

[120] P. Tapanadechopone, “Childhood disintegrative disorder: a case report,” J Med Assoc Thai, vol. 98, pp. 158-161, Mar. 2015.

[121] E. Shirazi , S. Hosseinpoor, S.M. Mirhosseini, and R. Bidaki , “Childhood disintegrative disorder with seasonal total mutism: A rare clinical presentation,” Adv Biomed Res, Vol. 5, pp. 30, Mar. 2016, doi:10.4103/2277-9175.178069.

[122] S. Malhotra, B.N. Subodh, P. Parakh, and S. Lahariya, “Brief report: childhood disintegrative disorder as a likely manifestation of vitamin B12 deficiency,” J Autism Dev Disord, vol. 43, no. 9, pp. 2207-2210, Jan. 2013.

[123] M. Campbell and J. Shay, “Pervasive developmental disorders,” In: H.J. Kaplan and B.T. Saddok, eds., Comprehensive text book of psychiatry, Baltimore: Williams and Wilkins, vol. 2, p. 2277, 1995.

[124] S.H. Charan, “Childhood disintegrative disorder,” J Pediatr Neurosci, vol. 7, no. 1, pp. 55–57, Jan-Apr. 2012, doi: 10.4103/1817-1745.97627.

[125] A. Philippe, Y. Craus, M. Rio, N. Bahi-Buisson, N. Boddaert, V. Malan, J.P. Bonnefont, and L. Robel, “Case report: an unexpected link between partial deletion of the SHANK3 gene and Heller’s dementia infantilis, a rare subtype of autism spectrum disorder,” BMC Psychiatry, vol. 15, pp. 256, Oct. 2015, doi:10.1186/s12888-015-0631-6.

[126] Y. Nomura, “Early behavior characteristics and sleep disturbance in Rett syndrome,” Brain Dev, vol. 27, pp. S35-S42. Nov. 2005.

[127] B. Hagberg, “Rett syndrome: long-term clinical follow-up experiences over four decades,” J Child Neurol, vol. 20, no. 9, pp. 722-727, Sep. 2005, doi:10.1177/08830738050200090401.

[128] K.J. Motil, R.J. Schultz, K. Browning, L. Trautwein, and D.G. Glaze, “Oropharyngeal dysfunction and gastroesophageal dysmotility are present in girls and women with Rett syndrome,” J Pediatr Gastroenterol Nutr, vol. 29, no. 1, pp. 31-37. Jul. 1999.

[129] R.E. Amir, I.B. Van den Veyver, R. Schultz, D.M. Malicki, C.Q. Tran, E.J. Dahle, A. Philippi, L. Timar, A.K. Percy, K.J. Motil, O. Lichtarge, E.O. Smith, D.G. Glaze, and H.Y. Zoghbi, “Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes,” Ann Neurol, vol. 47, no. 5, pp. 670–679, May 2000.

[130] S.E. Swanberg, R.P. Nagarajan, S. Peddada, D.H. Yasui, and J.M. LaSalle, “Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism,” Hum Mol Genet, vol. 18, no.3, pp. 525-534, Feb. 2009, doi:10.1093/hmg/ddn380.

[131] K.J. Mitchell, “The genetics of neurodevelopmental disease,” Curr opin neurobiol, vol. 21, no. 1, pp. 197-203, Feb. 2011, doi:10.1016/j.conb.2010.08.009.

[132] M.A. Mencarelli, A. Spanhol-Rosseto, R. Artuso, D. Rondinella, R. De Filippis, N. Bahi-Buisson, J. Nectoux, R. Rubinsztajn, T. Bienvenu, A. Moncla, B. Chabrol, L. Villard, Z. Krumina, J. Armstrong, A. Roche, M. Pineda, E. Gak, F. Mari, F. Ariani, and A. Renieri, “Novel FOXG1 mutations associated with the congenital variant of Rett syndrome,” J Med Genet, vol. 47, no. 1, pp. 49-53, Jan. 2010, doi:10.1136/jmg.2009.067884.

[133] F. Xiang, S. Buervenich, P. Nicolao, M.E. Bailey, Z. Zhang, and M. Anvret, “Mutation screening in Rett syndrome patients,” J Med Genet, vol. 37, no. 4, pp. 250-255, Apr. 2000.