International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us

IJSTR >> Volume 6 - Issue 9, September 2017 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Formation Of Volatile And Non-Volatile Compounds In Cheese

[Full Text]



Caglar Mert Aydin



Catabolism, Cheese, Lipolysis, Ripening, Proteolysis



Flavour development in cheese is a complex process in which major catabolic pathways involved. Initially, the curds of different cheese varieties have almost the same flavours, however the curd produce flavour compounds which lead to discrimination among cheese verities in terms of flavour throughout ripening. The major biochemical pathways involved throughout ripening of cheese are the followings; liberation of FFA (free fatty acid), associated catabolic reactions, the degradation of the casein matrix to peptides and FAA (free amino acids), the reactions for catabolism of FAA and the metabolism of lactate and citrate. In this review, the general pathway for formation of volatile and non-volatile flavour compounds are stated and detailed knowledge as to products of amino acid catabolism, proteolysis, lipolysis, lactate and citrate metabolism well discussed.



[1] Alewijn M., Smit B. A., Sliwinski E. L., Wouters J. T. M. (2007). The formation mechanism of lactones in Gouda cheese. Int. Dairy J. Vol. 17. 59-66.

[2] Ardo Y., Petterson H.E., Accelerated cheese ripening with heat-treated cells of Lactobacillus helveticus and a commercial proteolytic enzyme, J. Dairy Res. 55 (1988) 239–245.

[3] Arora G., Cormier F., Lee B. (1995). Analysis of Odor-Active Volatiles in Cheddar Cheese Headspace by Multidimensional GC/MS/Sniffing. J. of Agricultural and Food Chemistry. 43 (3), 748–752.

[4] Aston J.W., Dulley J.R., Cheddar cheese flavour, Aust. J. Dairy Technol. 37 (1982) 59–64.

[5] Barlow I., Lloyd G.T., Ramshaw E.H., Miller A.J., McCabe G.P., McCabe L., Correlations and changes in flavour and chemical parame- ters of Cheddar cheeses during maturation, Aust. J. Dairy Technol. 44 (1989) 7–18.

[6] Bonomo M. G., Cafaro C., Salzano G. (2014). Genotypic and technological diversity of Brevibacterium linens strains for use as adjunct starter cultures in ‘Pecorino di Filiano’ cheese ripened in two different environments. Microbiol. 60:61.

[7] Bruinenberg, P. G., Roo, G. d., & Limsowtin, G. K. V. (1997). Purification and characterization of cystathionine g-lyase from Lactococus lactis subsp. cremoris SK11: Possible role in flavor compound formation during cheese maturation. Applied and Environmental Microbiology, 63, 561–566.

[8] Budak S., Ad W., Bron P. A., de Vries R. P. (2016). Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese. Int J. of Fodd Microbiology. Vol. 237. 17-27.

[9] Carroll A. L., Desai S. H., Atsumi S. (2016). Microbial production of scent and flavor compounds. Current Opinion in Biotechnology. Vol. 37. 8-15.

[10] Chalier P., Crouzet J. (1993). Production of volatile components by Penicillium roqueforti cultivated in the presence of soya bean oil. Flavour and Fragrance J. Vol. 8. 43-49.

[11] Chalier P., Crouzet J. (1992). Production of lactones byPenicillium roqueforti. Biotechnology Letters. Vol. 14. 275-280.

[12] Chalier P., Crouzet J. (1998) Methyl ketone production from copra oil by Penicillium roqueforti spores. Food Chemistry. Vol. 63. 447-451.

[13] Chaudhari R. V., Richardson G. H., (1971). Lamb Gastric Lipase and Proteases in Cheese Manufacture. J. of Dairy Science. Vol. 54. 467-471.

[14] Chavarri F., Santisteban A., Virto M., de Renobales M. (1998). J Alkaline Phosphatase, Acid Phosphatase, Lactoperoxidase, and Lipoprotein Lipase Activities in Industrial Ewe's Milk and Cheese. Agric. Food Chem. 46 (8), pp 2926–2932.

[15] Chick J.F., Marchesseau K., Gripon J.C., Intra- cellular esterase from Lactococccus lactis subsp. lactis NCDO 763: purification and characteri-zation, Int. Dairy J. 7 (1997) 169–174.

[16] Clemente C., Vadehra D. V. (1967). Instrumental Assay of Microbial Lipase at Constant pH. Applied and Environmental Microbiology. Vol. 15. 110-113.

[17] Collin, J. C., & Law, B. A. (1989). Isolation and characterization of the l-methionine-g demethiolase from Brevibacterium linens NCDO 739. Science des Aliments, 9, 805–812.

[18] Collins Y. F., McSweeney P. L. H., Wilkinson M. G. (2003). Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int. Dairy J. Vol. 13. 841-866.

[19] Curtin A. C., McSweeney P. L. H., (2004). Catabolism of Amino Acids in Cheese during Ripening. Cheese: Chemistry, Physics and Microbiology. Volume 1. 435-454

[20] Dartley, C. K. Kinsella, J. E., Rate of formation of methyl ketones during blue cheese ripening, J. Agric. Food Chem. , 19, 771, 1971.

[21] Deckelbaum R. J., J. A. Hamilton, A. Moser, G. Bengtsson-Olivecrona, E. Butbul, Yvon A. C, A. Gutman, Thomas O. (1990). Medium-chain vs long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: implications for the mechanisms of lipase action. Biochemistry. 29 (5), pp 1136–1142.

[22] de la Feunte, M. A., Fontecha, J., & Ju!arez, M. (1993). Fatty acid composition of the triglyceride and free fatty acid fractions in different cows-, ewes-and goats-milk cheeses. Zeitschrift f ur Lebensmittel Unterschung und Forschung, 196, 155–158.

[23] de Leon-Gonzalez, L. P., Wendorff, W. L., Ingham, B. H., Jaeggi, J. J., & Houck, K. B. (2000). Influence of salting procedure on the composition of Muenster-type cheese. Journal of Dairy Science, 83, 1396–1401.

[24] de Llano, D., Ramos, M., Rodriguez, A., Montilla, A., & Juarez, M. (1992). Microbiological and physicochemical characteristics of Gamonedo blue cheese during ripening. International Dairy Journal, 2, 121–135.

[25] Dimos A., Urbach G.E., Miller A.J., Changes in flavour and volatiles of full-fat and low-fat cheeses during maturation, Int. Dairy J. 6 (1996) 981–995.

[26] Dirinck P., de Winne A. (1999). Flavour characterisation and classification of cheeses by gas chromatographic–mass spectrometric profiling. J. of Chromatography A., Vol. 847. 203-208.

[27] Driessen F M (1989) Inactivation of lipases and proteinases (indigenous and bacterial). In Heat-induced Changes in Milk. IDF Bulletin No. 238, pp 71–93. Brussels: International Dairy Federation.

[28] Dufossé L., Latrasse A., Spinnler H.E., Impor- tance des lactones dans les arômes alimentaires : structures, distribution, propriétés sensorielles et biosynthèse, Sci. Aliment. 14 (1994) 17–21.

[29] Dumont J.P., Roger S., Adda J., Camembert aroma: identification of minor constituents, Lait 56 (1976) 595–599.

[30] Dupuis C., Corre C., Boyaval P. (1993). Lipase and Esterase Activities of Propionibacterium freudenreichii subsp. freudenreichii. Applied and Environmental Microbiology. Vol. 59. 4004-4009.

[31] El-Soda M., El-Wahab H.A., Ezzat N., Desmazeaud M.J., Ismail A., The esterolytic and lipolytic activities of the lactobacilli. II. Detection of esterase system of Lactobacillus helveticus, Lactobacillus bulgaricus, Lacto- bacillus lactis and Lactobacillus acidophilus, Lait 66 (1986) 431–443.

[32] Engels W J M, Dekker R, de Jong C, Neeter R and Visser S (1997) A comparative study of volatile compounds in the water-soluble fraction of various types of ripened cheese. International Dairy Journal 7 255–263.

[33] Eriksen S., Flavour of milk and milk products. 1. The role of lactones, Milchwissenschaft 31 (1795) 549–552.

[34] Fan T. Y., Hwang D. H., Kinsella J. E. (1976). Methyl ketone formation during germination of Penicillium roqueforti. J. of Agricultural and Food Chemistry. 24 (3), pp 443–448.

[35] Fernandez, M., Doesburg, W. v., Rutten, G. A. M., Marugg, J. D., Alting, A. C., Kranenburg, R. v., & Kuipers, O. P. (2000). Molecular and functional analyses of the metC gene of Lactococcus lactis, encoding cystathionine b-lyase. Applied and Environmental Microbiology, 66(1), 42–48.

[36] Fox P. F., Singh T. K., McSweeney P. L. H. (1995). Chemistry of Structure-Function Relationships in Cheese. Chapter: Biogenesis of Flavour Compounds in Cheese. Springer. 59-98.

[37] Fox P. F., McSweeney P. L. H., (1996). Proteolysis in cheese during ripening. Food Reviews International. Vol. 12. Issue 4.

[38] Fox P.F., Wallace J.M., Formation of flavour compounds, Adv. Appl. Microbiol. 45 (1997) 17–85.

[39] Fox P.F., (2000). Fundamentals of Cheese Science. Springer Science & Business Media. ISBN: 9780834212602

[40] Fox P. F., Rehman S., (2002). Effect of added α-ketoglutaric acid, pyruvic acid or pyridoxal phosphate on proteolyis and quality of Cheddar cheese. Food Chemistry. Volume 76. 21-26.

[41] Fox P. F., McSweeney P. L. H., Cogan T. M., Guinee T. P., (2004). Cheese: Chemistry, Physics and Microbiology: General Aspects. Academic Press. ISBN: 9780080500935

[42] Fox F. P., Guinee T. P., Cogan T. M., McSweeney P. L. H. (2016). Microbiology of Cheese Ripening. Fundamental of Cheese Science. 333-390.

[43] Gallois A., Langlois D. (1990). New results in the volatile odorous compounds of French cheeses. Le Lait Dairy Science and Technology. Vol. 70. 89-106.

[44] Gao, S., & Steele, J. L. (1998). Purification and characterization of oligomeric species of an aromatic amino acid aminotransferase from Lactococcus lactis subsp. lactis S3. Journal of Food Biochemistry, 22, 197–211.

[45] Green M. L., Foster P. M. D. (1974). Comparison of the rates of proteolysis during ripening of Cheddar cheeses made with calf rennet and swine pepsin as coagulants. J. of Dairy Research. Vol. 41. 269-282.

[46] Hamad M. N. F. (2015). Effect of Adding Glucono-δ-Lactone, Different of Starters, Rennet on the Chemical Composition, Yield and Economic Study of Kareish Cheese. International Journal of Food Science and Nutrition Engineering. 5(3): 130-140.

[47] Hamad M., (2015). Comparative study between traditional Domiati cheese and Recombined Feta cheese. Indian J. Dairy Sci. 68(5).

[48] Hassan F. A. M., Mona A. M., Abd E., A. K. Enab (2013). Flavour Compounds in Cheese. Research on Precision Instrument and Machinery. Vol. 2.

[49] Hayes M. G., Hurley M. J., Larsen L. B., Heegaard C. W., Magboul A.A.A., Oliveira J. C., McSweeney P. L. H., Kelly A. L. (2001). Thermal inactivation kinetics of bovine cathepsin D. J. of Dairy Research. Vol. 68. 267-276.

[50] Henneberry S., O`Sullivan M. G., Kilcawley K. N., Kelly P. M., Wilkinson M. G., Guinee T. P. (2015). Sensory quality of unheated and heated Mozzarella-style cheeses with different fat, salt and calcium levels. Int. J. of Dairy Technology. Vol. 69. 38-50.

[51] Imhof, R., & Bosset, J. O. (1994). Relationship between microorganisms and formation of aroma compounds in fermented dairy products (review). Zeitschrift fur Lebensmittel Unterschung und Forschung, 198, 267–276.

[52] Jollivet N., Chataud J., Vayssier Y., Bensoussan M., Belin J., (1994). Production of volatile compounds in model milk and cheese media by eight strains of Geotrichum candidum Link. J. of Dairy Research. Vol. 61. Issue 2., 241-248.

[53] Jordan, K.J. and Cogan, T.M. (1993) Identification and growth of non-starter lactobacilli in Irish Cheddar cheese. Irish Journal of Agricultural and Food Research 32, 47–55.

[54] Kaminarides S., Dimipoulos E., Zoidou E., Moatsou G. (2015). The effect of addition of skimmed milk on the characteristics of Myzithra cheeses. Food Chemistry. Vol. 180. 164-170.

[55] Kaminogawa S., Yamauchi K., Miyazawa S., Koga Y., Degradation of casein components by acid protease of bovine milk, J. Dairy Sci. 63 (1980) 701–704.

[56] Keeney, M., & Day, E. (1957). Probable role of Streker degradation of amino acids in development of cheese flavour. Journal of Dairy Science, 40, 874–876.

[57] Kelly A. G., McSweeney P. L. H. (2003). Advanced Dairy Chemistry Volume 1 Proteins- Chapter: Indigenous Proteinases in Milk. Springer. 495-521.

[58] Kennes, C., Dubourguier, H.C., Albagnac, G. and Nyns, E.J. (1991) Citrate metabolism by Lactobacillus plantarum isolated from orange juice. Journal of Applied Bacteriology 70, 380–384.

[59] Kilcawley K. N., Wilkinson M. G., Fox P. F. (2001). A Survey of Lipolytic and Glycolytic End-Products in Commercial Cheddar Enzyme-Modified Cheese. J. of Dairy Science. Vol. 84. 66-73.

[60] Kilcawley K. N., (2016). Cheese Flavour .Fundamentals of Cheese Science. 443-474.

[61] Kinsella J. E., Hwang D. (1976). Biosynthesis of flavors by Penicillium roqueforti. Biotechnology and Bioengineering. Vol. 18. 927-938.

[62] Kongo J. M., Malcata F. X., (2016). Cheese: Processing and Sensory Properties. In: Caballero, B., Finglas, P., and Toldrá, F. (eds.) The Encyclopedia of Food and Health vol. 1, pp. 748-754. Oxford: Academic Press.

[63] Kunjapur A. M., Prather K. L. (2015). Microbial Engineering for Aldehyde Synthesis. Applied and Environmental Microbiology. Vol. 81. 1892-1901.

[64] Keen A. R., Walker N. J., Peberdy M. F. (1974). The formation of 2-butanone and 2-butanol in Cheddar cheese. J. of Dairy Research. Vol. 41. 249-257.

[65] Lamberet G., Lenoir J. (1976). The characteristics of the lipolytic system of Penicillium caseicolum have been tested with crude enzyme preparation obtained from cultures of 8 strains showing different abilities to produce extra-cellular lipases. Le Lait Dairy Science and Technology. Vol. 56. 119-134.

[66] Lamberet G., Auberger B., Bergere J. L. (1997). Aptitude of cheese bacteria for volatile S-methyl thioester synthesis. II. Comparison of coryneform bacteria, Micrococcaceae and some lactic acid bacteria starters. Applied Microbiology and Biotechnology. Vol. 48. 393-397.

[67] Law, B. A. (1984). Flavour development in cheese. In F. L. Davies, & B. A. Law (Eds.), Advances in the microbiology and biochemistry of cheese and fermented milk (pp. 187–208.). London: Elsevier Applied Science Publishers.

[68] Lawrence R. C. (1966). The Oxidation of Fatty Acids by Spores of Penicillium roqueforti. Microbiology. 44: 393-405.

[69] Lazzi C., Milena P., Locci F., Bernini V., Neviani E., Gatti M., (2016) Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano, Int. J. of Food Microbiology. 20-28

[70] Lee, C.-W., & Desmazeaud, M. J. (1985). Utilization of aromatic amino acids as nitrogen sources in Brevibacterium linens: An inducible aromatic amino acid aminotransferase. Archives of Microbiology, 140, 331–337.

[71] Leon-Gonzalez L. P., Wendorff W. L., Ingham B. H., Jaeggi J. J., Houck K. B. (2000). Influence of Salting Procedure on the Composition of Muenster-Type Cheese. J. of Dairy Science. Vol. 83. Issue 6. 1396-1401.

[72] Lerch, H. P., Bl.ocker, H., Kallwass, H., Hope, J., Tsai, H., & Collins, J. (1989). Cloning, sequencing and expression in Escherichia coli of the d-2-hydroxyisocaproate dehydrogenase of Lactobacillus casei. Gene, 78, 47–57.

[73] Liardon R., Bosset J.O., Blanc B., The aroma composition of Swiss Gruyère cheese. I. The alkaline volatile components, Lebensm. Wiss. u. Technol. 15 (1982) 143–147.

[74] Llano de D. G., Ramos M., Rodriguez A., Montilla A., Juarez M. (1992). Microbiological and physicochemical characteristics of Gamonedo blue cheese during ripening. Int. Dairy J. Vol. 2. 121-135.

[75] Malin E. L., Tunick M. H., (2013). Chemistry of Structure-Function Relationships in Cheese. Springer Science & Business Media. ISBN: 9781461519133

[76] Maria C. A. M., Falentin H., Maillard M., Chuat V., Medina R. B., Parayre S., Thierry A. (2014). The Secreted Esterase of Propionibacterium freudenreichii Has a Major Role in Cheese Lipolysis. Applied and Environmental Microbiology. Vol. 2. 751-756.

[77] Marshall J.D., Cole W.M., Threonine aldolase and alcohol dehydrogenase activities in Lacto- bacillus bulgaricus and Lactobacillus aci-dophilus and their contribution to flavour production in fermented milks, J. Dairy Res. 50 (1983) 375–379.

[78] Martinez-Cuesta M., Pelaez C., Requena T. (2013). Methionine Metabolism: Major Pathways and Enzymes Involved and Strategies for Control and Diversification of Volatile Sulfur Compounds in Cheese. Critical Reviews in Food Science and Nutrition. Vol. 53. Issue 4.

[79] McNeill, G. P., & Connolly, J. F. (1989). A method for the quantification of individual free fatty acids in cheese: Application to ripening of Cheddar type cheeses. Irish Journal of Food Science and Technology, 13, 119–128.

[80] McSweeney P.L.H., Fox P.F., Olson N.F., Pro-teolysis of bovine caseins by cathepsin D: pre- liminary observations and comparison with chy- mosin, Int. Dairy J. 5 (1995) 321–336.

[81] McSweeney P.L.H., Nursten H.E., Urbach G., Flavours and off-flavours in milk and dairy prod- ucts, in: Fox P.F. (Ed.), Advanced Dairy Chemistry, Chapman and Hall, London, UK, 2nd ed., vol. 3, 1997, pp. 403–468.

[82] McSweeney P. L. H., Sousa M. J. (2000). Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Le Lait Dairy Science and Technology. Vol. 80. 293-324.

[83] McSweeney P. L. H. (2004). Biochemistry of cheese ripening. Int. J. of Dairy Technology. Vol. 57. No 2/3.

[84] Meinhart E., Schreier P. (1986). Study of flavour compounds from Parmigiano Reggiano cheese. Milchwissenschaft. Vol. 41. 689-691.

[85] Menassa A., Lamberet G. (1982). Contribution to the study of the lipolytic system of Penicillium roqueforti. Comparison of characteristics of two exocellular activities. . Le Lait Dairy Science and Technology. Vol. 62. 611-612.

[86] Mentana A., Natale A., Palermo C., Nardiello D., Conte A., Nobile M., Quinto M., Centonze D. (2016). Mass spectrometry hyphenated techniques for the analysis of volatiles and peptides in soft cheese: Useful tools for the shelf life optimization. Electrophoresis. Vol. 37. 1861-1872.

[87] Molimard P., Spinnler H.E., Review: compounds involved in the flavour of surface mold- ripened cheeses: origins and properties, J. Dairy Sci. 79 (1996) 169–184.

[88] Morales, P.; F. Isabel; Fernández-García E.; N. Manuel (2004). Volatile Compounds Produced in Cheese by Enterobacteriaceae Strains of Dairy Origin. J. Of Food Production. 432-623.

[89] Mulder H., Taste and flavour-forming substances in cheese, Neth. Milk Dairy J. 6 (1952) 157–167.

[90] Nelson J.H., Jensen R.G., Pitas R.E., Pregastric esterase and other oral lipases – a review, J. Dairy Sci. 60 (1977) 327–362.

[91] Ney K.H., Recent advances in cheese flavour research, in: Charalambous G., Inglett G. (Eds.), The Quality of Foods and Beverages. Chemistry and Technology, vol. 1, Academic Press, New York, 1981, pp. 385–435.

[92] Niki, T., Yoshioka, Y., Ahiko, K., 1966. Proc. 17th Intern. Dairy Congr., Munich. Vol. D. p, 531

[93] Ojala T., Pia K. S. L., Terhi A., Jarna T., Saara P., Tuomas S., Matti K., Soile T., Lars P., Petri A. (2017). Functional genomics provides insights into the role of Propionibacterium freudenreichii ssp. shermanii JS in cheese ripening. Int. J. of Food Microbiology. Vol. 241. 39-48.

[94] Oterholm A., Ordal Z. J., Witter L. D. (1970). Purification and Properties of a Glycerol Ester Hydrolase (Lipase) from Propionibacterium shermanii. Applied and Environmental Microbiology. Vol. 20. 16-22.

[95] Palles, Beresford T., Condon, Cogan (2002). Citrate metabolism in Lactobacillus casei and Lactobacillus plantarum. J. of Applied Microbiology. 85(1):147 – 154

[96] Partidario, A. M., Barbosa, M., & Boas, L. V. (1998). Free fatty acids, triglycerides and volatile compounds in Serra da Estrela cheese changes throughout ripening. International Dairy Journal, 8, 873–881.

[97] Patrick F. Fox, Paul L.H. McSweeney, Timothy M. Cogan and Timothy P. Guinee. (2004). Cheese: Chemistry, Physics and Microbiology Volume 2, Pages 1-434

[98] Pedersen T. B., Vogensen F. K., Ardo Y. (2016). Effect of heterofermentative lactic acid bacteria of DL-starters in initial ripening of semi-hard cheese. Int. Dairy J. 72-79.

[99] Pilar M., F. Isabel, F. García E., N. Manuel (2004). Volatile Compounds Produced in Cheese by Enterobacteriaceae Strains of Dairy Origin. J. of Food Protection. 432-623.

[100] Poveda, J. M., P!erez-Coello, M. S., & Cabezas, L. (1999). Evolution of the free fatty acid fraction in Manchego cheese during ripening. Milchwissenschaft, 54, 685–687.

[101] Rehman S., McSweeney P. L. H., Banks J. M., Brechany E. Y., Muir D. D., Fox P. F. (2000). Ripening of Cheddar cheese made from blends of raw and pasteurised milk. Int. Dairy J. Vol. 10. 33-44.

[102] Rijnen L., Courtin P., Gripon J., Yvon M., (2000). Expression of a Heterologous Glutamate Dehydrogenase Gene inLactococcus lactis Highly Improves the Conversion of Amino Acids to Aroma Compounds. Applied and Environmental Microbiology. Vol. 66. 1354-1359.

[103] Sacristán N., D. Fernández, J. M. Castro, M. E. Tornadijo, J. M. Fresno (2016). Effect of an autochthonous starter culture, including lactococci and Geotrichum candidum strains, on the ripening of a semi- hard goat’s milk cheese. Academic Journals. Vol. 10(9), pp. 301-311.

[104] Schutte, H., Hummel, W., & Kula, M. R. (1984). l-2-hydroxyisocaproate dehydrogenase Fa new enzyme from Lactobacillus confusus for the stereospecific reduction of 2-ketocarboxylic acids. Applied Microbiology and Biotechnology, 19, 167–176.

[105] Sloot D., Hofman H.J., Alkylpyrazines in Emmental cheese, J. Agric. Food Chem. 23 (1975) 358.

[106] Smacchi, E., & Gobbetti, M. (1998). Purification and characterization of cystathionine g-lyase from Lactobacillus fermentum DT41. FEMS Microbiology Letters, 166, 197–202.

[107] Smit G., Smit B. A., Engels W. J., (2005). Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews. 591-610

[108] Sorhaug T., Ordal Z. J. (1974). Cell-Bound Lipase and Esterase of Brevibacterium linens. Applied and Environmental Microbiology. Vol. 27. 607-608.

[109] Starrenburg M., Hugenholtz J. (1991). Citrate Fermentation by Lactococcus and Leuconostoc spp.. Applied and Environmental Microbiology. Vol. 57. 3533-3540.

[110] Steffen C., Flückiger E., Bosset J.O., Rüegg M., Swiss–type varieties, in: Fox P.F. (Ed.), Cheese: Chemistry, Physics and microbiology. Major Cheese Groups, Vol. 2, Elsevier Appl. Sci., Lon- don and New York, 1987, pp. 93–120.

[111] Thierry A., Maillard M. B., Le Quere J. L. (1999). Dynamic headspace analysis of Emmental aqueous phase as a method to quantify changes in volatile flavour compounds during ripening. Int. Dairy J. Vol. 9. 453-463.

[112] Upadhyay V K, McSweeney P L H, Magboul A A A and Fox P F (2004) Proteolysis in cheese during ripening. In Cheese: Chemistry, Physics and Microbiology, Vol 1: General Aspects, 3rd edn, pp 391–434. Fox P F, McSweeney P L H, Cogan T M and Guinee T P, eds. London:Elsevier.
[113] bach G. (1993). Relations between cheese flavour and chemical composition. Int. Dairy Journal. 389-422

[114] Urbach G., Contribution of lactic acid bacteria to flavour compound formation in dairy products, Int. Dairy J. 5 (1995) 877–903.

[115] Urbach G. (1997). The flavour of milk and dairy products: II. Cheese: contribution of volatile compounds. Int. J. of Dairy Technology. Vol. 50. 79-89.

[116] Weimer B. C. (2007). Improving the Flavour of Cheese. Elsevier. ISBN: 9781845693053

[117] WilkinsonM. G., Guinee T. P., Daniel M. O., Fox P. F., (1994). Autolysis and proteolysis in different strains of starter bacteria during Cheddar cheese ripening. J. of Dairy Research. Vol. 61. 249-262.

[118] Wong N.P., Ellis R., La Croix D.E., Quantitative determination of lactones in Cheddar cheese, J. Dairy Sci. 58 (1975) 1437–1441.

[119] Woo, A. H., Kollodge, S., & Lindsay, R. C. (1984). Quantification of major free fatty acids in several cheese varieties. Journal Dairy Science, 67, 874–878.

[120] Woo, A. H., & Lindsay, R. C. (1984). Concentrations of major free fatty acids and flavour development in Italian cheese varieties. Journal of Dairy Science, 67, 960–968.

[121] Yanachkina P., McCarthy C., Guinee T., Wilkinson M. (2016). Effect of varying the salt and fat content in Cheddar cheese on aspects of the performance of a commercial starter culture preparation during ripening. Int. J. of Food Microbiology. Vol. 224. 7-15.

[122] Yvon M., Gripon J.C., Berthelot S., (1998). Adding α-Ketoglutarate to Semi-hard Cheese Curd Highly Enhances the Conversion of Amino acids to Aroma Compounds. Int. Dairy J., Volume 8. 889-898.

[123] Yvon, M., Chambellon, E., Sorokine, A., & Roudot-Algaron, F. (2000). Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763. Applied and Environmental Microbiology, 66(2), 571–577.

[124] Yvon M., Rijnen L., (2001). Cheese flavour formation by amino acid catabolism. Int. Dairy J., Vol. 11. 185-201.