International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 8 - Issue 10, October 2019 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Investigations On The Optical And Mechanical Properties Of Non Linear Optical Creatininium Phosphite Single Crystal

[Full Text]



Sindhusha S, Padma C M, Amalanathan M



Monoclinic, band gap, nonlinear susceptibility, polarizability, mechanical property



The main objective of this study is to grow and characterize optically transparent single crystals of Creatininium phosphite by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis confirms the lattice parameters and the centro symmetrical nature of the synthesized crystal. The optical constants such as band gap energy and refractive index of the grown crystal were evaluated by UV-visible transmittance spectral study. The HOMO, LUMO energy and the energy gap were calculated and analysed. Photoluminescence spectral study confirms the emission behaviour of the gown crystal. The theoretical non linear optical parameter such as dipole moment, polarizability, hyper polarizability and second order hyper polarizability were calculated and analyzed. Third order optical nonlinearity was confirmed by Z-scan technique. Second Harmonic Generation was confirmed by Kurtz Perry powder technique. Mechanical property of the grown crystal was analysed by using vickers microhardness analysis.



[1] P.N. Prasad, D.J.Williams, Introduction to Nonlinear Optical effects in Molecules and Polymers, Wiley-Interscience, New York, 1991.
[2] W.S. Wang, M.D. Aggarwal, J. Choi, T. Gebre, A.D. Shields, B.G. Penn, D.O. Frazier, Solvent effects and polymorphic transformation of organic nonlinear optical crystal l-pyroglutamic acid in solution growth processes: I. Solvent effects and growth morphology, J. Cryst. Growth, 1999 198, 578–582.
[3] D.S.J. Chemla (Ed.), Nonlinear Optical properties of Organic Molecules and Crystals, Academic Press, New York, 1987.
[4] S.R. Marder, J.E. Sohn, G.D. Stucky (Eds.), Material for Nonlinear Optics, American Chemical Society, Washington, DC, 1991.
[5] K. Senthil, S.Kalainathan, A. R. Kumar and P.G Aravindan, Investigation on synthesis, crystal structure and third-order NLO properties of a new stilbazolium derivative crystal: A promising material for nonlinear optical devices, RSC Adv., 2014, DOI: 10.1039/C4RA09112D.
[6] D. Narayana Rao, Pratibha Chopra, Suniti K. Ghoshal, Jacek Swiatkiewicz, Paras N. Prasad, Thirdorder nonlinear optical interaction and conformational transition in poly4 BCMU polydiacetylene studied by picosecond and subpicosecond degenerate four wave mixing, The Journal of Chemical Physics, 1986, 84, 7049; doi: 10.1063/1.450627
[7] M. Krishna Kumar, S. Sudhahar, P. Pandi, G. Bhagavannarayana, R. MohanKumar, Studies of the structural and third-order nonlinear optical properties of solution grown 4-hydroxy-3-methoxy-4′-N′-methylstilbazolium tosylate monohydrate crystals, Opt. Mater., 2014, 34, 988–995.
[8] Jonathan G. Breitzer, Dana D. Dlott, Lawrence K. Iwaki, Sean M. Kirkpatrick, Thomas B. Rauchfuss, Third-Order Nonlinear Optical Properties of Sulfur-Rich Compounds, J. Phys. Chem. A , 1999, 103, 6930–6937.
[9] K. Senthil , S. Kalainathan , F. Hamada , M. Yamada , P.G. Aravindan, Synthesis, growth, structural and HOMO and LUMO, MEP analysis of a new stilbazolium derivative crystal: A enhanced third-order NLO properties with a high laser-induced damage threshold for NLO applications Opt. Mater., 2015, 46, 565-577.
[10] Ueda H, J Chem Phys 1964, 40(3), 901-905.
[11] R. Thirumurugan, K. Anitha, A novel organic nonlinear optical crystal: Creatininium succinate, AIP Conf. Proc, 2015, 1665, 100022-1–100022-3.
[12] R. Thirumurugan, K. Anitha, Experimental and computational studies on creatininium 4-nitrobenzoate - An organic proton transfer complex,j.molstruc., 2017,1146, 273-284.
[13] R. Thirumurugan, K. Anitha, Materials Letters, Structural, optical, thermal, dielectric, laser damage threshold and Z-scan studies on fumarate salt of creatinine: A promising third-order nonlinear optical material, 2017, 206, 30-33.
[14] Sindhusha S, Padma C. M, Gunasekaran B, creatininium phosphite, IUCrData, 2 (2017).
[15] R. Thirumurugan, B. Babu, K. Anitha, J. Chandrasekaran, Experimental and density functional theory (DFT): A dual approach to probe the key properties of creatininium l-tartrate monohydrate single crystal for nonlinear optical applications, Journal of Molecular Structure 2017,
[16] J. Tauc, Amorphous and liquid semiconductors, Plenum, New York, 1974, 159.
[17] R. Robert, C. Justin Raj, S. Krishnan, S. Jerome Das, Growth, theoretical and optical studies on potassium dihydrogen phosphate (KDP) single crystals by modified Sankaranarayanan–Ramasamy (mSR) method, Physica B, 2010, 405, 20–24.
[18] V.Guptha, A.Mansingh, Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film, J.Appl.Phys, 1996, 80 (2), 1063-1073.
[19] Y. Sun, X. Chen, L. Sun, X. Guo, W. Lu, Nanoring structure and optical properties of Ga8As8, Chem. Phys. Lett. (2003), 381, 397 - 403.
[20] O. Christiansen, J. Gauss, J.F. Stanton, Frequency-dependent polarizabilities and first hyperpolarizabilities of CO and H2O from coupled cluster calculations, Chem. Phys. Lett., 1999, 305, 147 - 155.
[21] D.A. Kleinman, Nonlinear Dielectric Polarization in Optical Media, Phys. Rev., 1977, 126 1962.
[22] N.S. Labidia,, A. Djebaili, Materials Science and Engineering B, 2010, 169, 28.
[23] M. Amalanathan, T.S. Xavier, I. Hubert Joe, V.K. Rastogi, Normal coordinate analysis and Nonlinear Optical Response of cross-conjugated system 4,4-Dimethyl Benzophenone Spectrochimica Acta Part A, 2013, 116, 574 - 583.
[24] N.S. Labidi, A. Djebaili , I. Rouina, Substitution Effects on the Polarizability (Α) and First Hyperpolarizability (β) of All-Trans Hexatriene, Journal of Saudi Chemical Society, 2011, 15, 29 - 37.
[25] D. Young, Computational Chemistry: A Practical Guide, for Applying Techniques to Real World Problems, John Wiley & Sons, New York, 2001.
[26] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976.
[27] Reichman J. 1998 Handbook of optical filters for fluorescence Microscopy, (Brattleboro VT: Chroma technology corp).
[28] A.M. Asiri, M. Karabacak, M. Kurt, K.A. Alamry, Synthesis, molecular conformation, vibrational and electronic transition, isometric chemical shift, polarizability and hyperpolarizability analysis of 3-(4-methoxy-phenyl)-2-(4-nitro-phenyl)-acrylonitrile: a combined experimental and theoretical analysis, Spectrochim. Acta A, 2011, 82, 444 - 445.
[29] B. Kosar, C. Albayrak, Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol Spectrochim. Acta A, 2011, 78 160 - 167.
[30] L.S. Pu, Materials for nonlinear optics – Chemical perspectives, ACS Symp. Ser. 455 (1991) 331.
[31] J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and 399 Applications, Elsevier, Amsterdam, 1996.
[32] E. Scrocco, J. Tomasi, in: P. Lowdin (Ed.), Advances in Quantum Chemistry, Academic Press, New York, 1978.
[33] F.J. Luque, M. Orozco, P.K. Bhadane, S.R. Gadre, SCRF calculation of the effect of water on the topology of the molecular electrostatic potential, J. Phys. Chem., 1993, 97, 9380 - 9384.
[34] J. Sponer, P. Hobza, DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations, Int. J. Quant. Chem., 1996, 57, 959 - 970.
[35] L.A. Padilha, S. Webster, H. Hu, O.V. Przhonska, D.J. Hagan, E.W. Van Stryland,M.V. Bondar, I.G. Davydenko, Y.L. Slominsky, A.D. Kachkovski, Excited state absorption and decay kinetics of near IR polymethine dyes, Chem. Phys., 2008, 352, 97e105.
[36] J. Mattu, T. Johansson, G.W. Leach, Third-order nonlinear optical responsefrom polythiophene-based thin films, J. Phys. Chem., 2007, C 111, 6868e6874.
[37] K. Mohana Priyadharshini and A. Chandramohan, “Synthesis, growth, crystal structure and characterization of an organic salt single crystal: diimidazolium dipicrate monohydrate,” TheExperiment, 2014, 25(4), 1759–1774.
[38] W. Guo, F. Guo, C. Wei et al., SHG from centrosymmetric supermolecular crystal, Science in China Series B: Chemistry,vol., 2002, 45(3), 276.
[39] M. Shakir, S. K. Kushwaha,K.K.Maurya,M. Arora, andG.Bhagavannarayana,“Growth and characterization of glycine picrate—remarkable second-harmonic generation in centrosymmetric crystal,” Journal of Crystal Growth, 2009, 311(15), 3871–3875.
[40] R. Tintu, V.P.N. Nampoori, P. Radhakrishnan, S. Thomas, Nanocomposite thinfilms of Ga5Sb10Ge25Se60 chalcogenide glass for optical limiting applications, Opt. Mater., 2011, 33, 1221–1225.
[41] Cahoon J.P., Broughton W.H., Katzuk A.R., The determination of yield strength from hardness measurements. Metall. Trans., 1971, 2, 1979–1983.
[42] Susmita K., Sen Gupta S.P., Vickers microhardness studies on solution-grown single crystals of magnesium sulphate hepta-hydrate. Mater. Sci. Eng.,2005, A 398, 198–203.