International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 8 - Issue 11, November 2019 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Fabrication Of Novel (PVA/NiO/SiC) Nanocomposites, Structural, Electronic And Optical Properties For Humidity Sensors

[Full Text]



Hind Ahmed, Ahmed Hashim



humidity sensors, metal oxides, density function theories, optical constant.



The nanocomposites are really promising for industrial, environmental and medical applications. In this work, new types of nanocomposites have been prepared from (PVA-NiO) and SiC for humidity sensor with high sensitivity and low cost.The experimental and theoretical studies on structural and optical properties of nanocomposites have been investigated.The optical microscope and FTIR studies were examined. In variation of wavelength(220�800)nm, the optical properties of nanocomposites were examined. Results showed thatthe optical absorbance of (PVA-NiO) increases with increasing of ((SiC)) nanoparticles concentrations. The energy gap decreases while the optical constants of ((PVA-NiO)) are increase by increasing of (SiC) nanoparticle concentration. In variety of humidity ((40�80)) RH.%. The different of electrical resistance for ((PVA-NiO-SiC)) nanocomposites with relative humidity is studied. The results showed that ((PVA-NiO-SiC)) nanocomposite have a great sensitivity for relative humidity.



[1] Ningaraju, S., Prakash, A. G., & Ravikumar, H. B. (2018). Studies on free volume controlled electrical properties of PVA/NiO and PVA/TiO2 polymer nanocomposites. Solid State Ionics, 320, 132-147.
[2] Kumar, A., Kaur, K., & Sharma, S. (2013). Synthesis, characterization and antibacterial potential of silver nanoparticles by Morusnigra leaf extract. Indian J Pharm Biol Res, 1(4), 16-24.
[3] Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: nanocomposites. Polymer, 49(15), 3187-3204.‏.
[4] Sharma, S. K., Prakash, J., Sudarshan, K., Sen, D., Mazumder, S., &Pujari, P. K. (2015). Structure at Interphase of Poly (vinyl alcohol)–SiC Nanofiber Composite and Its Impact on Mechanical Properties: Positron Annihilation and Small-Angle X-ray Scattering Studies. Macromolecules, 48(16), 5706-5713.‏
[5] Ningaraju, S., Prakash, A. G., &Ravikumar, H. B. (2018). Studies on free volume controlled electrical properties of PVA/NiO and PVA/TiO2 polymer nanocomposites. Solid State Ionics, 320, 132-147.‏
[6] Xiang, Q., Yu, J., &Jaroniec, M. (2012). Graphene-based semiconductor photocatalysts. Chemical Society Reviews, 41(2), 782-796.‏
[7] Sk, M. M., Yue, C. Y., Ghosh, K., & Jena, R. K. (2016). Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. Journal of Power Sources, 308, 121-140.‏
[8] Hdidar, M., Chouikhi, S., Fattoum, A., Arous, M., &Kallel, A. (2018). Influence of TiO2 rutile doping on the thermal and dielectric properties of nanocomposite films based PVA. Journal of Alloys and Compounds, 750, 375-383.‏
[9] Jang, J. H., & Han, J. I. (2017). Cylindrical relative humidity sensor based on poly-vinyl alcohol (PVA) for wearable computing devices with enhanced sensitivity. Sensors and Actuators A: Physical, 261, 268-273.‏
[10] Rathod, S. G., Bhajantri, R. F., Ravindrachary, V., Sheela, T., Pujari, P. K., Naik, J., &Poojary, B. (2015). Pressure sensitive dielectric properties of TiO2 doped PVA/CN-Li nanocomposite. Journal of Polymer Research, 22(2), 6.‏
[11] Aziz, S. B., Rasheed, M. A., Saeed, S. R., & Abdullah, O. G. (2017). Synthesis and characterization of CdS nanoparticles grown in a polymer solution using in-situ chemical reduction technique. Int J Electrochem Sci, 12, 3263-3274.‏
[12] Abdullah, O. G., &Saeed, S. R. (2013). Effect of NaI doping on same physical characteristic of (PVA) 0.9-(KHSO4) 0.1 composite films. Chemistry and Materials Research, 3(11), 19-24.
[13] Mahendia, S., Tomar, A. K., & Kumar, S. (2010). Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. Journal of Alloys and Compounds, 508(2), 406-411.‏
[14] Balko, J., Csanádi, T., Sedlák, R., Vojtko, M., Kovalčíková, A., Koval, K., ... &Naughton-Duszová, A. (2017). Nanoindentation and tribology of VC, NbC and ZrC refractory carbides. Journal of the European Ceramic Society, 37(14), 4371-4377.‏
[15] Zhao, X., Long, Y., Yang, T., Li, J., & Zhu, H. (2017). Simultaneous High Sensitivity Sensing of Temperature and Humidity with Graphene Woven Fabrics. ACS applied materials & interfaces, 9(35), 30171-30176.‏
[16] Yang, T., Xie, D., Li, Z., & Zhu, H. (2017). Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering: R: Reports, 115, 1-37.‏
[17] Yang, Y., Zhou, Y., Wu, J. M., & Wang, Z. L. (2012). Single micro/nanowire pyroelectric nanogenerators as self-powered temperature sensors. ACS nano, 6(9), 8456-8461.
[18] Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, J., &Bulnes, F. G. (2014). Infrared thermography for temperature measurement and non-destructive testing. Sensors, 14(7), 12305-12348.‏.
[19] Kong, D., Le, L. T., Li, Y., Zunino, J. L., & Lee, W. (2012). Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir, 28(37), 13467-13472.‏.
[20] Farahani, H., Wagiran, R., &Hamidon, M. N. (2014). Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors, 14(5), 7881-7939.‏
[21] Wang, Y. (2013). Fabrication of Relative Humidity Sensors based on Polyimide Nanoparticles (Doctoral dissertation, Applied Sciences: School of Engineering Science).‏
[22] Karthick, S., Lee, H. S., Kwon, S. J., Natarajan, R., &Saraswathy, V. (2016). Standardization, calibration, and evaluation of tantalum-nano rGO-SnO2 composite as a possible candidate material in humidity sensors. Sensors, 16(12), 2079.‏
[23] Young, D. C. (2001). A Practical Guide for Applying Techniques to Real-World Problems.‏
[24] Zhong, Z. J. (2009). Optical properties and spectroscopy of nanomaterials. World Scientific.‏
[25] Ilican, S., Caglar, M., &Caglar, Y. (2007). The effect of deposition parameters on the physical properties of CdxZn1-xS films deposited by spray pyrolysis method. journal of optoelectronics and advanced materials, 9(5), 1414-1417.
[26] Hamad, T. K., Yusop, R. M., Abdullah, B., &Yousif, E. (2014). Laser induced modification of the optical properties of nano-ZnO doped PVC films. International Journal of Polymer Science, 2014.‏
[27] Nathan, A. A., Onoja, A., & Amah, A. (2015). Influence of PVA, PVP on Crystal and Optical properties of Europium doped Strontium Aluminate Nanoparticles. American J. Eng. Res, 4(4), 85-91.‏
[28] Suresh, S. (2013). Investigation of the optical and dielectric properties of the urea L-malic acid NLO single crystal. Am. Chem. Sci. J, 3(3), 325-337.‏
[29] Lalithambika, K. C., Shanthakumari, K., &Sriram, S. (2014). Optical properties of CdO thin films deposited by chemical bath method. Int. J. Chem Tech Res, 6(5), 3071-3077.‏
[30] Ghodsi, F. E., &Absalan, H. (2010). Comparative study of ZnO thin films prepared by different sol-gel route. ActaPhysicaPolonica-Series A General Physics, 118(4), 659.‏
[31] Gaffar, M. A., El-Fadl, A. A., &Anooz, S. B. (2003). Influence of strontium doping on the indirect band gap and optical constants of ammonium zinc chloride crystals. Physica B: Condensed Matter, 327(1), 43-54.‏
[32] Imam, N. G., & Mohamed, M. B. (2016). Environmentally friendly Zn0. 75Cd0. 25S/PVA hetero system nanocomposite: UV-stimulated emission and absorption spectra. Journal of Molecular Structure, 1105, 80-86.‏
[33] Atkins, P., & De Paula, J. (2011). Physical chemistry for the life sciences. Oxford University Press, USA.‏
[34] Kavitha, E., Sundaraganesan, N., & Sebastian, S. (2010). Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of 4-nitroaniline by density functional method.‏
[35] W. J. Hehre, L. Radom, P. R. Schleyer and J. A. Pople, "Ab initio molecular orbital theory ", John Wiley & Sons Inc, New York , 1986.
[36] Oftadeh, M., Naseh, S., & Hamadanian, M. (2011). Electronic properties and dipole polarizability of thiophene and thiophenol derivatives via density functional theory. Computational and Theoretical Chemistry, 966(1-3), 20-25.‏
[37] Sadasivam, K., & Kumaresan, R. (2011). Theoretical investigation on the antioxidant behavior of chrysoeriol and hispidulin flavonoid compounds–A DFT study. Computational and Theoretical Chemistry, 963(1), 227-235.‏
[38] Abdulsattar, M. A. (2009). Size effects of semi empirical large unit cell method in comparison with nanoclusters properties of diamond-structured covalent semiconductors. Physica E: Low-dimensional Systems and Nanostructures, 41(9), 1679-1688.
[39] Hugosson, H. W. (2001). A theoretical treatise on the Electronic Structure of designer Hard Materials (Doctoral dissertation, Acta Universitatis Upsaliensis).
[40] Hoffman, R. V. (2004). Organic chemistry: an intermediate text. John Wiley & Sons.‏
[41] Indolia, A. P., & Gaur, M. S. (2013). Optical properties of solution grown PVDF-ZnOnanocomposite thin films. Journal of Polymer Research, 20(1), 43.‏
[42] Amin, G. A. M., &Abd-El Salam, M. H. (2014). Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles. Materials Research Express, 1(2), 025024.‏
[43] Pham, N. K., Vu, N. H., Van Pham, V., Ta, H. K. T., Cao, T. M., Thoai, N., & Tran, V. C. (2018). Comprehensive resistive switching behavior of hybrid polyvinyl alcohol and TiO2 nanotube nanocomposites identified by combining experimental and density functional theory studies. Journal of Materials Chemistry C, 6(8), 1971-1979.‏
[44] Yu, M., Jayanthi, C. S., & Wu, S. Y. (2009). Bonding Nature, Structural Optimization, and Energetics studies of SiC Graphitic-Like layer Structures and Single/Double Walled Nanotubes. arXiv preprint arXiv:0901.3567.‏
[45] Dietzel, P. D., Johnsen, R. E., Fjellvåg, H., Bordiga, S., Groppo, E., Chavan, S., & Blom, R. (2008). Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal–organic framework Ni2 (dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. Chemical communications, (41), 5125-5127.‏
[46] Ramosa, J. M., Maurıcio, M. C., Anilton Jr, C. C., Otavio, V., & Claudio, A. T. S. (2011). Fourier transform infrared spectrum: Vibrational assignments using density functional theory and natural bond orbital analysis of the bis (guanidoacetate) nickel (II) complex. Science Asia, 37, 247-255.‏
[47] Fan, L., & Ziegler, T. (1992). Application of density functional theory to infrared absorption intensity calculations on main group molecules. The Journal of chemical physics, 96(12), 9005-9012.‏
[48] Atkins, P., & De Paula, J. (2011). Physical chemistry for the life sciences. Oxford University Press, USA.
[49] Suart, B. (2004). Infrared spectroscopy: Fundamental and applications. Google Scholar.‏‏
[50] ‏Hoffman, R. V. (2004). Organic chemistry: an intermediate text. John Wiley & Sons.‏
[51] Casassa, S., Ferrari, A. M., Busso, M., & Pisani, C. (2002). Structural, magnetic, and electronic properties of the NiO monolayer epitaxially grown on the (001) Ag surface: an ab initio density functional study. The Journal of Physical Chemistry B, 106(50), 12978-12985.‏
[52] Sriram, S., Chandiramouli, R., Balamurugan, D., Ravichandran, K., & Thayumanavan, A. (2013). Quantum chemical studies on NiO nanoclusters. J. Atom. Molec. Sci, 4(4), 336-348.‏
[53] Hashim A. and Hadi Q. (2018). Structural, electrical and optical properties of (biopolymer blend/ titanium carbide) nanocomposites for low cost humidity sensors. Journal of Materials Science: Materials in Electronics, 29:11598–11604.
[54] Hashim A. and Hadi Q.(2018). Synthesis of Novel (Polymer Blend-Ceramics) Nanocomposites: Structural, Optical and Electrical Properties for Humidity Sensors, Journal of Inorganic and Organometallic Polymers and Materials, 28(4): 1394–1401.
[55] Kumar, N. B., Crasta, V., & Praveen, B. M. (2014). Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10-98) doped by ZnO nanoparticles. Physics Research International, 2014.
[56] Hashim A., Agool I. R. and Kadhim K. J. Novel of (Polymer Blend-Fe3O4) Magnetic Nanocomposites: Preparation and Characterization For Thermal Energy Storage and Release, Gamma Ray Shielding, Antibacterial Activity and Humidity Sensors Applications. Journal of Materials Science: Materials in Electronics. 29(12): 10369–10394.
[57] Singh, S. D., Poswal, A. K., Kamal, C., Rajput, P., Chakrabarti, A., Jha, S. N., & Ganguli, T. (2017). Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure. Solid State Communications, 259, 40-44.‏
[58] Joshi, M., & Singh, R. P. (2009). Cross Linking Polymers (PVA & PEG) with TiO2 Nanoparticles for Humidity Sensing. Sensors & Transducers, 110(11), 105.‏
[59] Srivastava, R. (2015). Effect of Poly Ethylene Glycolon Moisture Sensing of Copper Ferrite Nanocomposite. American Journal of Sensor Technology, 3(1), 1-4.‏