International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 8 - Issue 10, October 2019 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Antimicrobial Compounds from Catharanthus roseus- A review

[Full Text]



Sara E Gomaa, Maizatulakmal Yahayu, Muktiningsih Nurjayadi, Daniel Joe Dailin, Hesham El Enshasy



Cathrantus roseus, antimicrobial, bioactive compounds, alkaloids, genetic regulations.



Catharanthus roseus L. (Apocynacea) which is also known as Madagascar periwinkle and Vinca rosea is historically been used for the treatment of various diseases. The assessment of this plant extracts to be used as prophylactic agent against certain human pathogens has been thoroughly investigated by previous researchers. It is an important plant for novel pharmaceuticals since most of the pathogens are developing resistance against currently available antimicrobial drugs. Thus, this review is summarizing the active compounds which are responsible for bioactivity of the plant and provides insight into genetic regulation of alkaloids containing in the extracts to serve as antimicrobial agents. Further research on Catharanthus roseus is highly recommended to explore its full potential as phytomedicine specifically to be developed as antimicrobial drug.



[1] Abu-Shady, M.R.; Farid, M.A.; El-Diwany, A.I. and El-Enshasy, H.A. (1995). Studies on rifamycins production by Amycolatopsis mediterranei cells immobilized on glass wool. J. Basic Microbiol. 35, 279-284.
[2] Agouillal F, Moghrani H, Nasrallah N, Hanapi Z, Mat Taher Z, El Enshasy HA (2018). Coupling ultrasound with enzyme-assisted extraction of essential oil from Algerian Artemisia herba-alba Asso. Journal of Scientific and Industrial Research. 77, 465-471.
[3] Alam Sher, (2009). Antimicrobial activity of natural products from medicinal plants. Global Journal of Mathematical Sciences. 7 (1), 72-78.
[4] Alba BMA, Bhise SB. (2011). Comparative studies on antioxidant properties of Catharanthus Rosea and Catharanthus. International Journal of Pharmaceutical Techniques, 3(3): 1551-1556.
[5] Almagro L, Francisco FP, Pedreño MA. (2015). Indole Alkaloids from Catharanthus roseus: bioproduction and 2their effect on human health. Molecules. 20(2): 2973-3000.
[6] Alqahtani A, Hamid K, Kam A. Wong KH, Abdelhak Z, Razmovski-Naumovski V, Chan K, Li KM, Groundwater PW, Li GQ. (2013). The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Current Medicinal Chemistry, 20 (7): 908-931.
[7] Babalola IT, Shode FO. (2013). Ubiquitous ursolic acid: a potential pentacyclic triterpene natural product. International Journal of Pharmacognosy and Phytochemical, 8192 (2): 214-222.
[8] Babulova A, Machova J, Nosalova V. (2003). Protective action of vinpocetine against experimentally induced gastric damage in rats. Arzneimittel forschung. 43: 981- 985.
[9] Balaabirami S, Patharajan S. (2012). In-vitro antimicrobial and antifungal activity of Catharanthus roseus leaves extract against important pathogenic organisms. Academic Sciences. 4, 1-4.
[10] Barrales-Cureño HJ, Andrade-Hoyos P, Reyes CR, Espinoza-Perez J, Valdez LGL, De Jesús AG, Ruíz JAC, Herrera LMS, Caballero MCC, Magallón JAS, Montoya JM. (2019). Alkaloids of pharmacological importance in Catharanthus roseus. In Alkaloids. Intech Open. 1-18.
[11] Boumehira A, El Enshasy HA, Hacene H, Elsayed EA, Aziz R, Park EY (2016a). Recent Progress on the Development of Antibiotics from the Genus Micromonospora. Biotechnology and Bioprocess Engineering. 21, 199-223.
[12] Boumehira A, Abd Malek R, Othman NZ, Ware I, Ramli S, Malek K, Hacene H, El Enshasy H (2016b). Bioprocess development for β- and γ-rubromycin production: A Human Telomerase Inhibitors, by Streptomyces sp. ADR1. Journal of Scientific and Industrial Research 75, 609-614.
[13] Carqueijeiro I, Brown S, Chung K, Dang TT, Walia M, Besseau S, de Bernonville TD, Oudin A, Lanoue A, Billet K, Munsch T, Koudounas K, Melin C, Godon C, Razafimandimby B, de Craene JO, Glévarec G, Marc J, Giglioli-Guivarc’h N, Clastre M, St-Pierre B, Papon N, Andrade RB, O’Connor SE, Courdavault V. (2018). Two Tabersonine 6,7-epoxidases initiate lochnericine-derived alkaloid biosynthesis in Catharanthus roseus. Plant Physiology. 177(4): 1473-1486.
[14] Costa-Campos L, Lara DR, Nunes DS, Elisabetsky E. (1998). Antipsychotic-like profile of alstonine. Pharmacology Biochemistry and Behavior. 60 (1): 133-141.
[15] Das S, Sharangi AB. (2017). Madagascar periwinkle (Catharanthus roseus L.): Diverse medicinal and therapeutic benefits to humankind. Journal of Pharmacognosy and Phytochemistry. 6(5), 1695-1701.
[16] Delgoda R, Murray JE. (2017). Chapter 7- Evolutionary perspectives on the role of plant secondary metabolites, Editor(s): Simone Badal, Rupika Delgoda, Pharmacognosy, Academic Press, 93-100, ISBN 9780128021040.
[17] Dwivedi S., Singh M., Singh AP., Singh V. and Uniyal G.C. (2001). Registration of new variety Prabal of Catharanthus roseus. Journal of Medicinal and Aromatic Plant Sciences. 23: 104-106.
[18] Elisabetsky E, Costa-Campos L. (2006). The alkaloid alstonine: a review of its pharmacological properties. Evidence-Based Complementary and Alternative Medicine. 3(1): 39-48.
[19] Elsayed EA, Farid MA, El Enshasy HA (2019). Kinetics of natamycin production and degradation by Streptomyces natalensis in shake flasks and 7.5 L stirred tank bioreactor under batch and fed-batch conditions. BMC Biotechnology (2019) 19:46 https://doi.org/10.1186/s12896-019-0546-2.
[20] Farnsworth DL (1969). Book Reviews and Notices: LSD, Man and Society. Journal of Pastoral Care, 23(2): 121-122.
[21] Farnsworth NR. (1961). The pharmacognosy of the periwinkles: Vinca and Catharanthus. Lloydia. 24 (3): 105-138.
[22] Gandhi M, Vinayak VK. (1990). Preliminary evaluation of extracts of Alstonia scholaris bark for in vivo antimalarial activity in mice. Journal of Ethnopharmacology. 29(1): 51-57.
[23] Gill SS, Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48(12): 909-930.
[24] Gomaa SE, Rahman RAA, El-Wakil HMF, Khaled AS, Hassan HM. (2014). Tropane Alkaloids Accumulation and Proline content in Datura metel and Datura stramonium callus cultures under Aluminum Chloride Stress. 2nd International Conference on Biotechnology and Environmental Safety, NRC, Cairo, Egypt, pp13.
[25] Guimaraes G, Cardoso L, Oliveira H, Santos C, Duarte P. (2012). Cytogenetic characterization and genome size of the medicinal plant Catharanthus roseus (L.) G. Don. AoB Plants. Volume 2012. https://doi.org/10.1093/aobpla/pls002.
[26] Gupta M, Kaushik S, & Tomar RS, Mishra RK. (2017). An overview of Catharanthus roseus and medicinal properties of their metabolites against important diseases. European Academic Research. 5(2). 1237-1247.
[27] Guschin A, Ryzhikh P, Rumyantseva T, Gomberg M, Unemo M. (2015). Treatment efficacy, treatment failures and selection of macrolide resistance in patients with high load of Mycoplasma genitalium during treatment of male urethritis with Josamycin, BMC Infectious Diseases. 15: 1-7.
[28] Heiko R, Matej O, Tuulikki S, Mikko K, Freya L, Wilson A, Marc CE, Dirk I, Kirsi-Marja O, Alain G. (2006). Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proceedings of the National of Sciences of The United States of America. 103(14): 5614-5619.
[29] Huang L, Li J, Ye H, Li C, Wang H, Liu B, Zhang Y. (2012). Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus, Planta, 236 (5), 1571-1581.
[30] Jaggi M, Kumar S, Sinha AK, (2011). Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Applied microbiology and biotechnology. 90: 1005-1016.
[31] Karadge BA, Gaikwad PV. (2003). Influence of sodium chloride salinity on growth and organic constituents of Catharanthus roseus G. Don. Indian Journal of Plant Physiology. 8(4): 392-397.
[32] Kaur S, Mondal P. (2014). Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial properties of medicinal plants. Journal of Microbiology and Experimentation. 1(1): 23-28.
[33] Kiss B, Karpati E. (1996). Mechanism of action of vinpocetine. Acta Pharmaceutica Hungarica, 66: 213-224.
[34] Krishnaraju AV, Rao-Tayi VN, Sundararaju D, Vanisree M, Tsay HS, Subbaraju GV. (2005). Assessment of bioactivity of Indian medicinal plant using brine shrimp (Artemia salina) Lethality Assay. International Journal of Applied Science and Engineering. 3(2): 125-134.
[35] Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y. (2015). The role of oxidative stress and antioxidants in liver diseases. International Journal of Molecular Sciences. 16: 26087-26124.
[36] Li Y, Zhao H, Duan B, Korpelainen H, Li C. (2011). Effect of drought and ABA on growth, photosynthesis and antioxidant system of Cotinus coggygria seedlings under two different light conditions. Environmental and Experimental Botany. 71(1): 107-113.
[37] Liang T, Yue W, Li Q. (2010). Comparison of the phenolic content and antioxidant activities of Apocynum venetum L. (Luo-Bu-Ma) and two of its alternative species. International Journal of Molecular Sciences, 11(11): 4452–4464.
[38] Liobikas J, Majiene D, Trumbeckaite S, Kursvietiene L, Masteikova R, Kopustinskiene DM, Savickas A, Bernatoniene J. (2011). Uncoupling and antioxidant effects of ursolic acid in isolated rat heart mitochondria. Journal of Natural Products. 74 (7): 1640-1644.
[39] Liu Y, Qinghuan M, Xihua D, Zhang Z, Li D. (2017). Effects of PEG-induced drought stress on regulation of indole alkaloid biosynthesis in Catharanthus roseus. Journal of Plant Interactions. 12(1): 87-91.
[40] Magnotta M, Murata J, Chen J, De Luca V. (2007). Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry. 68(14): 1922-1931.
[41] Marta R, Lúcia CS, Manuel S. (2018). Biocides, Reference Module in Life Sciences, Elsevier. ISBN 9780128096338.
[42] Martin I, Sawatzky P, Liu G, Mulvey MR. (2015). Antimicrobial resistance to Neisseria gonorrhoeae in Canada: 2009–2013, Canada Communicable Disease Report. 41: 40-41.
[43] Mishra JN, Verma NK. (2017). A brief study on Catharanthus Roseus: A review. International Journal of Research in Pharmacy and Pharmaceutical Sciences. 2(2): 20-23.
[44] Mishra P, Sharma S. (2001). Pattern of diversity for morphological and alkaloid yield related trades among the periwinkle Catharathus roseus accessions collected from in and around Indian Subcontinent. Genetic Resource and Crop Evolution. 48: 273- 286.
[45] Misra N, Gupta AK. (2006). Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of Plant Physiology. 163(1): 11-18.
[46] Mohsen D. (2008). Discovery of chlorogenic acid-based peptidomimetics as a novel class of antifungals. a success story in rational drug design, Journal of Pharmacy and Pharmaceutical Sciences, 11 (2): 44-55.
[47] Monika S, Vandana S. (2013). Catharanthus roseus (An anti-cancerous drug yielding plant) -A review of potential therapeutic properties. International Journal of Pure and Applied Biosciences. 1(6): 139-142.
[48] Moreno PRH, Van der Heijden R, Verpoorte R. (1994). Elicitor-mediated induction of isochorismate synthase and accumulation of 2,3-dihydroxy benzoic acid in Catharanthus roseus cell suspension and shoot cultures. Plant Cell Reports. 14(2-3), 188-191.
[49] Nisar A, Mamat AS, Hatim MI, Aslam MS, Ahmad MS. (2017). Antioxidant and total phenolic content of Catharanthus roseus using deep eutectic solvent. Recent Advances in Biology and Medicine, 3: 7-10.
[50] Nisar A, Mamat AS, Hatim MI, Aslam MS, Syarhabil M, (2016). An updated review on Catharanthus roseus: phytochemical and pharmacological analysis. Indian Research Journal of Pharmacy and Science, 3: 632-653.
[51] Pandey SS, Singh S, Babu CS, Shanker K, Srivastava NK, Shukla AK, Kalra A. (2016). Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Scientific Reports. 6:26583.
[52] Ramani S, Chelliah J. (2007). UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biology. 7(1): 61.
[53] Reddy LH, Couvreur P. (2009). Squalene: A natural triterpene for use in disease management and therapy, Advanced Drug Delivery Reviews, 61 (15): 1412-1426.
[54] Retna AM, Ethalsha P. (2013). A review of the taxonomy, ethnobotany, chemistry and pharmacology of Catharanthus roseus (Apocyanaceae), International Journal of Engineering Research & Technology. 2 (10): 3899-3912.
[55] Ríos JL, Recio MC. (2005). Medicinal plants and antimicrobial activity, Journal of Ethnopharmacology, 100 (1-2): 80-84.
[56] Rizvi NF, Weaver JD, Cram EJ, Lee-Parsons CW. (2016). Silencing the transcriptional repressor, ZCT1, illustrates the tight regulation of terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy roots. PLoS One. 11(7).
[57] Saiman MZ, Miettinen K, Mustafa NR, Choi YH, Verpoorte R. (2018). Metabolic alteration of Catharanthus roseus cell suspension cultures overexpressing geraniol synthase in the plastids or cytosol. Plant Cell Tissue and Organ Culture. 134: 41-53.
[58] Shanmugam MK, Dai X, Kumar AP, Tan BKH, Sethi G, Bishayee A. (2013). Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies. Biochemical Pharmacology, 85 (11): 1579-1587.
[59] Shittu OK, Stephen DI, Kure AH. (2017). Functionalization of biosynthesized gold nanoparticle from aqueous leaf extract of Catharanthus roseus for antibacterial studies. African Journal of Biomedical Research. 20: 195-202.
[60] Siddiqui MJ, Ismail Z, Aisha AFA, Majid AMSA. (2010). Cytotoxic activity of Catharanthus roseus (Apocynaceae) crude extracts and pure compounds against human colorectal carcinoma cell line. International Journal of Pharmacology. 6(1), 43-47.
[61] Singh SN, Vats P, Suri S, Shyam R, Kumria MM, Ranganathan S, Sridharan K. (2001). Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. Journal of Ethnopharmacology. 76: 269-277.
[62] Sottomayor M, Ros Barcelo A. (2005) The Vinca alkaloids: from biosynthesis and accumulation in plant cells, to uptake, activity and metabolism in animal cells. In: Attaur R., editor. Studies in Natural Products Chemistry (Bioactive Natural Products). Amsterdam: Elsevier Science Publisher. 813-57.
[63] Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR. (1989). Evaluation of traditional plant treatments for diabetes: studies in streptozotocin diabetic mice. Acra Diabetologia Latina, 26: 51-55.
[64] Swanston-Flatt SK, Day C, Flatt PR, Gould BJ, Bailey CJ. (1989). Glycaemia effects of traditional European plant treatments for diabetes studies in normal and streptozotocin diabetic mice. Diabetes Research. 10: 69-73.
[65] Taher Z.M, Agouillal, F.; Lim JR, Marof AQ, Dailin DJ, Nurjayadi M, Razig N.M, Gomaa S E. El Enshasy, H. (2019). Anticancer Molecules from Catharanthus roseus. Indonesian Journal of Pharmacy (In Press).
[66] Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, Awang K. (2015). Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia. 102: 182-188.
[67] Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, Cheah SC, Mustafa MR, Awang K. (2013). Antidiabetic and Antioxidant Properties of Alkaloids from Catharanthus roseus (L.) G. Don. Molecules. 18: 9770-9784.
[68] Van Baren C, Anao I, Lira PDL. Debenedetti S, Houghton P, Croft S, Martino Z. (2006). Triterpenic acids and flavonoids from Satureja parvifolia, evaluation of their antiprotozoal activity. Journal of Biosciences, 61(3-4): 189-192.
[69] Van Bergen MA, Snoeijer W, (1996). Revision of Catharanthus G. Don. Series of Revisions of Apocynaceae XLI, Backhuys Publishers: Leiden, The Netherlands. 32-35.
[70] Van der Heijden R, Jacobs DI, Snoeijer W, Hallard D. Verpoorte R. (2004). The Catharanthus alkaloids: Pharmacognosy and Biotechnology. Current Medicinal Chemistry. 11: 607-628.
[71] Van Moerkercke A, Fabris M, Pollier J, Baart GJ, Rombauts S. (2013). CathaCyc, a Metabolic Pathway Database Built from Catharanthus roseus RNA-Seq Data. Plant Cell Physiology. 54: 673-685.
[72] Verma M, Rajesh G, Raghvendra S, Sinha AK, Jain M. (2014). Transcriptome Analysis of Catharanthus roseus for Gene Discovery and Expression Profiling. Plos One 9. (7): 1-11.
[73] Wang JY, Liu ZP, Liu L, Liu C. (2008). Effects of NaCl on the growth and alkaloid content of Catharanthus roseus seedlings. Ying Yong Sheng Tai XueBao. 19(10): 2143-2148.
[74] Wu X, Lu CH, Shen YM. (2009). Three new ent‐trachylobane diterpenoids from co‐cultures of the calli of Trewia nudiflora and Fusarium sp. WXE. Helvetica Chimica Acta, 92 (12): 2783-2789.
[75] Zahari R, Halimoon N, Ahmad MF, Ling SK. (2018). Antifungal compound isolated from Catharanthus roseus L. (Pink) for biological control of root rot rubber diseases. International Journal of Analytical Chemistry, vol. 2018, Article ID 8150610, 6 pages. https://doi.org/10.1155/2018/8150610.
[76] Zárate R, Verpoorte R. (2007). Strategies for the genetic modification of the medicinal plant Catharanthus roseus (L.) G. Don. Phytochemistry Reviews. 6 (2-3): 475-491.
[77] Zenk MH, El-Shagi H, Arens H, Stöckigt J, Weiler EW, Deus B. (1977). Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In Plant Tissue Culture and Its Bio-technological Application. Springer Berlin Heidelberg, New York City, US. 27-43.
[78] Zhang D, Li X, Hu Y, Jiang H, Wu Y, Ding Y, Yu K, He H, Xu J, Sun L, Qian F. (2018). Tabersonine attenuates lipopolysaccharide-induced acute lung injury via suppressing TRAF6 ubiquitination, Biochemical Pharmacology, 154: 183-192.
[79] Zhao J, Hu Q, Guo YQ, Zhu WH. (2001). Elicitor-induced indole alkaloid biosynthesis in Catharanthus roseus cell cultures is related to Ca2+ influx and the oxidative burst. Plant Science. 161(3): 423-431.