IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 1, January 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Genesis Of Bensa Kaolin Deposit, Southern Ethiopia; Assessment From Major And Trace Element Geochemistry Of The Kaolin Deposit

[Full Text]

 

AUTHOR(S)

Andualem Getaw, Selamawit Dagnachew, Eyob Abebe

 

KEYWORDS

alteration, element mobility, genesis, kaolinisation, Supergene

 

ABSTRACT

Bensa kaolin deposit is found in Southern nation nationality and people of Ethiopia regional state which is 405km south of Addis Ababa, Ethiopia. This study presents new major and trace element chemistry of Bensa kaolin deposit to assess element characteristics during kaolinisation processes and genesis of the kaolin deposit of the area. Bensa kaolin is a result of weathering of rhyolitic ignimbrite and it shows high concentration of SiO2 ranges between 53.6 to 68.8 wt. % and Fe2O3 (4.85-7.74 wt. %) and exhibits very limited CaO (0.27-0.62 wt. %), MgO (0.14-0.31 wt. %), P2O5 (0.1-0.2 wt. %) and MnO (0.12-0.3 wt. %). The highly mobile Large ion lithophile element (LILE) Sr (23.3-60.5ppm), Rb (32.3-88.4ppm), Ba (201-593ppm) and Cs (0.54-1.67ppm) of Bensa kaolin shows depletion pattern on the Chondrite normalized spider plot whereas the immobile High field strength element (HFSE) Zr (1070-1770ppm), Hf (26.8-45.4ppm), Nb (143-30ppm), Ta (9.3-14.8ppm) and REE concentrations of Bensa kaolin samples exhibit enrichment pattern. The major and trace element concentration of Bensa kaolin indicates samples from depth >20m and from the periphery of the deposit are less mature with respect to chemistry and physical property compared with samples from the center of the deposit. The depletion of CaO, MgO, P2O5, MnO and LILE and the enrichment of HFSE of Bensa kaolin indicates the mobile elements have been removed from the system during the kaolinisation processes and it is the characteristics of supergene kaolin origin. Under very high temperature to some extent HFSE Zr can be mobilized and it can be removed from the system but the very high concentration of Zr in Bensa kaolin deposit reflect that the kaolinisation processes may have been undertook at low temperature condition.

 

REFERENCES

[1] O. Benjamin, A. Ebenezer, O. Ayodele, O. Joseph, U. Emmanuel, A.Thomas, Characterization of Kaolin Deposits in Okpella and Environs, Southern Nigeria. International Journal of Geosciences, 10: 317-327pp, 2019.
[2] N.E. Idenyi, C.O. Nwajagu, Non-Metallic Material Technology. Olison Publication, Enugu, 2003.
[3] H.H. Murray, Kaolin minerals: Their genesis and occurrences. In: bail Ey, s.w. (ed.): Hydrous phyllosilicates (Exclusive of micas). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C, 1988.
[4] H.H. Murray, W.D. Keller, Kaolins, kaolins and kaolins. In: H.H. Murray, W.M. Bundy, C.C. Harvey, (Eds.), Kaolin Genesis and Utilization. The clay Minerals Society, Boulder, CO, pp. 1–24, 1993.
[5] H.A. Gilg, S.H. Lmeyer, H. Miller, S.M. Sheppard, Supergene origin of the lastarria kaolin deposit, south-central Chile and paleoclimatic implications. Clays and Clay Minerals, 47:2, 201-211, 199.
[6] S. Ismail, V. Husain, S. Anjum, Mineralogy and Genesis of Nagar Parker Kaolin Deposits, Tharparkar District, Sindh, Pakistan. Int. j. econ. environ. geol., 5(1):33-40pp, 2014.
[7] Gemechu Bedassa, Worash Getaneh, Binyam Hailu, Geochemical and mineralogical evidence for the supergene origin of kaolin deposits–Central Main Ethiopian Rift. Journal of African Earth Sciences, 149: 143–153pp, 2019.
[8] Bakari Ali, Zauro Tukur, Geochemical and Geological Characterization of Kaolinite Deposits around Kaoje, Kebbi State, Nigeria. International journal of scientific & technology research, 4/11: 97-100pp, 2015.
[9] F. Cravero, E. Domınguez, C. Iglesias, Genesis and applications of the cerro rubio kaolin deposit, patagonia (Argentina). Appl. Clay Sci. 18, 157–172, 2001.
[10] Njoya, C. Nkoumbou, D. Grosbois, D. Njopwouo, D. Njoya, A. Courtin-Nomade, J. Yvon, F. Martin, Genesis of Mayouom kaolin deposits (western Cameroon). Applied Clay Science 32, 125–140pp, 2006.
[11] Meyer, J.J. Hemley, Wall rock alteration. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, 167–235pp, 1967.
[12] N. N. Bukalo, E. Georges-Ivo, E. Ekosse, O. John Odiyo, S. Jason, Geochemistry of Selected Kaolins from Cameroon and Nigeria, Review Article. Open Geosci; 9:600–612pp, 2017.
[13] Meunier, B. Velde ,P. Dudoignon, D. Beaufort, Identification of weathering and hydrothermal alteration in acidic rocks: petrography and mineralogy of clay minerals. Sci. Geol. Mem. 72: 93–99pp, 1983.
[14] L. Harnois, the CIW index: a new chemical index of weathering. Sediment Geol. 55, 319–322pp, 1988.
[15] H.W. Nesbitt, G.M. Young, Early Proterozoic climates and past plate motions inferred from major element chemistry of lutites. Nature 299, 715–717pp, 1982.
[16] J.A. Grant, The isocon diagram. A simple solution the Gresens' equation for metasomatic alteration. Econ. Geol. 81, 1986.
[17] J.C.F. Caliani, E. Galán, P. Aparicio, A. Miras, M.G. Márquez, Origin and geochemical evolution of the Nuevo Montecastelo kaolin deposit (Galicia, NW Spain). Applied Clay Science, 49:91–97pp, 2010.
[18] E. Dominguez, C. Iglesias, M. Dondi, The geology and mineralogy of a range of kaolins from the Santa Cruz and Chubut provinces, Patagonia (Argentina). J. Clay Sci. 40: 124-142pp, 2008.
[19] E.A. Dominguez, C. Iglesias, M. Dondi, H.H. Murray, Genesis of the La Espingarda kaolin deposit in Patagonia. Applied Clay Science, 47:290-302pp, 2010.
[20] T. Solomon, M. Jean-Pierre, D. Yves, Geology and mineral potential of Ethiopia: a note on geology and mineral map of Ethiopia. J. Afr. Earth Sci. 36, 273-313pp, 2003.
[21] Tibebu Mengistu and Haile Mickael Fentaw, The industrial mineral and rock resource potential of Ethiopia. Chron. Rech. Min. 540: 33-40pp, 2010.
[22] Australian Mineral Laboratory Service, Right Solutions, Right Partner Schedule of Services & Fees; Geochemistry, alsglobal.com, 52pp, 2019.
[23] D.E. Highley, China clay mineral dossier. British Geological Survey, UK, 26pp, 1984.
[24] A.J. Bloodworth, D.E. Highley, C.J. Mitchell, Industrial Mineral Laboratory Manual, Kaolin. Mineralogy and petrology group, British Geological Survey, United Kingdom, Nottingham, 80pp, 1993.
[25] K.S. Arifln, H.A. Rahman, H. Hussin K,A,A, Hadi, The genesis and characteristics of primary kaolinitic clay occurrence at Bukit Lampas, Simpang Pulai, Ipoh, Bulletin of the Geological Society of Malaysia, 54: 9-16pp, 2008.
[26] J.A. Winchester, P.A. Floyd, Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 245-252pp, 1977.
[27] R.N. Thompson, Magmatism of the British Tertiary volcanic province: Scot. Geol.18, 49-107pp, 1982.
[28] W.V. Boynton, Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henserson, P., Ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114pp, 1984.
[29] Ali Abedini and Ali Asghar, Geochemical characteristics of the Abgarm kaolin deposit, NW Iran. N. Jb. Geol. Paläont. Abh. 278/3:335-350pp, 2015.
[30] S.M. McLennan, S.R. Taylor, Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J. Geol. 99: 1–21pp, 1991.
[31] N. Jiang, S. Sun, X. Chu, T. Mizuta, D. Ishiyama, Mobilization and enrichment of high-field strength elements during late- and post-magmatic processes in the Shuiquangou syenitic complex, Northern China. Chemical Geology, 200: 117-128pp, 2003.
[32] A.B. Searle, R.W. Grimshaw, the Chemistry and Physics of Clays. Inter-science Publishers, Inc., New York, 942pp, 1959.
[33] R.F.J. Giese, Kaolin minerals: Structures and stabilities. In: Bailey, S.W. (ed.): Hydrous phyllosilicates (Exclusive of micas). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C. 1988.
[34] H.G. Dill, H.R. Bosse, H.R. Henning, A. Fricke, H. Ahrendt, Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt of the Central Andes of northwestern Peru. Mineralium Deposita, 32:149-163pp, 1997.
[35] Grecco, S. Marfill, P.J. Maiza, Mineralogy and geochemistry of hydrothermal kaolin’s from the Adelita mine, Patagonia (Argentina); relation to other mineralization in the area. Clay Minerals, 47:131-146pp, 2012.
[36] S. Salvi, A.E. WilliaMs-Jones, The role of hydrothermal processes in concentrating high-field strength elements in the strange Lake peralkaline complex, northeastern Canada. Geochimica et Cosmochimica Acta, 60: 1917-1932pp, 1996.
[37] M. Bau, Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93:219-230pp, 1991.
[38] M. Bau, P. Moller, Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineralogy and Petrology, 45: 231-246pp, 1992.
[39] S. Kadir, H. Erkoyun, Genesis of the hydrothermal Karaçayır kaolinite deposit in Miocene volcanics and Palaeozoic metamorphic rocks of the Uşak-Güre Basin, western Turkey. Turkish Journal of Earth Sciences, 22: 444-468pp, 2013.