IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 2- Issue 2, February 2013 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



On The Convergence Of A Non Linear Method For Ordinary Differential Equations

[Full Text]

 

AUTHOR(S)

E. A. Ibijola, R. B. Ogunrinde

 

KEYWORDS

Keywords: - Initial Value Problem, Stability, Non-Linear, Rational Interpolant

 

ABSTRACT

Abstract: - In this paper, we present a comprehensive detail of the convergence theorem for a non-linear method for numerical integration of ordinary differential equations. We prove that the non-linear method is not only stable but convergent.

 

REFERENCES

[1]. Fatunla, S. O. (1982), Non Linear Multistep Method for Value Problems, Computer and Mathematics with Applications, Vol. 8, No. 3, pp 231-239.

[2]. Fatunla, S. O. (1988), Numerical Methods for IVPs in ODEs, Academic Press, USA.

[3]. Henrici, P. (1962), Discrete Variable Methods in ordinary Differential Equations, John Wiley and Sons, New York.

[4]. Ibijola, E. A. and Kama, P. (1999), On the Convergence, Consistency and Stability of a One- Step Method for Numerical Integration of Ordinary Differential Equations, International Journal of Computer Mathematics, Vol. 73, pp. 261-277.

[5]. Lambert, J. D. (1973), Computational Methods in ODEs, John Wiley and Sons, New York.