International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 8 - Issue 11, November 2019 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Memristor Materials: Working Conditions And Properties

[Full Text]



Manish Bilgaye, Adesh Kumar, Anurag Srivastava, Piyush Dua



Nano-scale, Material, Memristor, Memory effect, Physical phenomenon, Electrical Properties, Operating parameters.



Material independent memory effect is all prevalent in the nature because of the dynamical properties of electrons and ions. These perturbations are responsible for generating and evolving to new states and hence the history of the material which is referred to as memory effect. This memory effect reflects as a variable resistor suggesting paradigm change from charge based volatile memory to resistance based nonvolatile memory indicative of huge power savings and related advantages. Studies from many aspects have been carried out on memristor like requirement of free energy barriers between two sates to hold the memory state intact, impact of ionic conduction and concentration polarization, thermodynamic behavior, impact of thermal fluctuations, and response of the system to noise. The scope of the paper includes review of candidate materials showing memristive properties, study of memristive properties and physical phenomenon of these materials and operating current, voltage and power range of various memristors.



[1] Kim H., Sah M. P., Yang C., Roska T., Chua L. O.: Memristive bridge synapses, Proceedings of IEEE (2012)
[2] Pershin Y. Y., Massimiliano D. V.: Memory effects in complex materials and nanoscale system, Advances in Physics, Taylor and Francis (2011)
[3] Wang L., Gai S.:The next generation mass storage devices – Physical principles and current states, Journal of Contemporary Physics, Taylor & Francis, Vol 55, 2014.
[4] Kish L. B., Granqvist C., Sunil K., Wan P. H.: ‘Demons: Maxwell’s demons, Szilard’s engine, Landauer’s erasure – dissipation, International Journal of Modern Physics: Conference series. 33: 1460364
[5] Strukov D B., William R. S.: Comment on exponential ionic drift: fast switching and low volatility of thin film memristor, Applied Physics A (2009) 94:515-519
[6] Valov. I.: Nanobatteries in redox based resistive switches require extension of memristive theory, Nature communications, 4(4):1771
[7] Meuffels P, Soni R.: Fundamental issues and problems in realization of memristors, Condensed matters, 2012
[8] Ventra D. M, Pershin. Y. V.: On physical properties of memristive, memcapacitive and meminductive systems, Nanotechnology, 24 (25): 255201
[9] Yun L., Yinyin L., Liamzhang L., Baowei Q., Yunfeng L., Jie F.: The performance of Ge2Sb2Te5 material for PCRAM device, International journal of integrated ferroelectrics, Vol 78, 2006. Taylor and Francis
[10] Bapannayya C., Rajeev G., Agarwal S. C.: Potential fluctuations in phase change memory materials, Philosophical magazine letters, Taylor and Francis
[11] Chua L. O.: Memristor – the missing circuit element, IEEE transactions in circuit theory, 507-519 (1971)
[12] Chua L. O., Kang S. M.: Memristive devices and systems, Proceedings of IEEE (1976)
[13] Adamatzky A, Chua L. O.: Memristive networks, Springer, New York. ISBN: 978-3-319-02629-9
[14] Williams R. S., Strukov D. B., Snider G. S., Stewart D. R.: The missing memristor found, Nature, vol. 453 n. 7191, pp. 80-83 (2008)
[15] William R. S., Tetzlaffed R.: Memristor and memristive systems, Springer, New York. ISBN: 978-1-4614-9067-8
[16] www.einsteinpapers.press.princeton.edu
[17] Strukov D. B., William R. W.: Exponential ionic drift: fast switching and low volatility of thin film memristors, Applied Physiscs, vol 94, Issue 3, pp 515-519 (2009)
[18] Sapoff M., Oppenheim R. M.: Theory and application of self-heated thermistors, Proceedings of IEEE (1963)
[19] Hodgkin A. L., Huxley A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve, The journal of physiology, 117(4): 500-544 (1952)
[20] Waser R., Aono M.: Nanoionics-based resistive switching memories, Nature materials 6, 833-840 (2007)
[21] Hu F., Sun M., Song s., Song Z., Zhai J.: Multistep resistance memory behavior in Ge2Sb2Te5/GeTe stacked chalcogenide films, Journal of integrated ferroelectrics, Vol. 140, 2012, Taylor and Francis
[22] Ventra M. D., Pershin Y. V.: Circuit elements with memory: memristors, memcapacitors and meminductors, Proceedings of IEEE, Vol 97, Issue 10 (2009)
[23] ITRS – The international; technology roadmap for semiconductors, http://www.itrs.net
[24] Senkader S., Wright K. D.: Model for phase-change of GeSb2Te5 in optical and electrical memories, Journal of applied physics 95, 504 (2004)
[25] Pelesko J. A., Bernstein D. H.: Modeling MEMS and NEMS, CRC Press, ISBN: 9781584883067 (2002)
[26] Waser R., Dittman R., Staikov K., Szot K.: Redox-based resistive switching memories – Nanoionic mechanisms, prospects and challenges, Advanced materials (2009)
[27] Bichlev O., Zhao W., Gamrat C., Alibart F.: Functional model of a nanoparticle organic memory transistor foe use as a spiking synapse, IEEE transactions of electron devices 57(11): 3115-3122 (2010)
[28] Martinez-Rincon J., Ventra M. D., Pershin Y. V.: Solid state memcapacitive system with negative and diverging capacitance, Physics review B81, 195430 (2010)
[29] Lang S. B., Nuensit S.: Review of some lesser-known applications of piezoelectric and pyroelectric polymers, Applied physics, Vol 85, Issue 2, pp 125-134 (2006)
[30] Tao Z., Han T., Chang K., Zhan F., Portman J., He Z., Wang K., Wu J., Malliakas C. D., Kanatzidis M. G., Torres D., Sepulveda N., Mananti S. D., Berz M., Duxbury P. M., Ruan C. Y.: Ultrafast metal insulators
[31] Sonoda K., Sakai A., Moniwa M., Ishikawa K., Tsuchiya O.: A compact model of phase-change memory based on rate equations of crystallization and amorphization, IEEE transactions on electron devices, vol 55 no 7 (2008)
[32] Syed G. S.: Material science and engineering of phase change random access memory, Journal of Material science and engineering, Vol. 33, 2017. Taylor and Francis
[33] Georgion J., Kossifos K. M., Antoniades M. A., Jaafer A. H., Kamp N. T.: Chua mem-components for adaptive RF metamaterials, IEEE symposium on circuits and systems (2018)
[34] Muzumder P., Kang S. M., Waser R.: Memristors: Device, models and applications, Proceedings of the IEEE, Vol 100, No 6 (2012)
[35] Wang F. Z., Helian N., Wu S., Lim M. G., Guo Y., Parker M. A.: Delayed switching in memristors and memristive systems, IEEE electron device letters, Vol 31, No 7 (2010)
[36] MacVittie K., Katz E.: Self powered electrochemical memristor based on biofuel cell – towards memristor integrated with biocomputing system, Royal society of chemistry (2014)
[37] Pershin Y. V., Ventra M. D.: Practical approach to programmable analog circuits with memristors, IEEE transactions on circuits and systems, (2010)
[38] Kamaran E.: Evolution of nonvolatile resistive switching memory technologies: The related influence on heterogeneous nonvolatile memory, Transactions on electrical and electronics materials (2010)
[39] Marina S, V., Valdimir S. R., Olga D. A., Antonina S. L., Viktoria I. P., Galina I. M.: Ti/TiO2 indicator electrodes formed by plasma electrolytic oxidation for potentiometric analysis, Pages 1128-1144, 2016
[40] Chen Y., Liu G., Wang C., Zang W., Li R-W., Wang L.: Polymer memristor for information storage and neuromorphic application, Royal society of chemistry (2014)
[41] Guarcello C., Solinas P., Ventra M. D., Giazotto F.: Solitonic Josephson-based meminductive system
[42] Kamarozaman N. S., Asah M. N., Aznilinda Z., Bakar R. A., Abdulla W. F. H., Herman S. H., Rusop M.: Paper name, Advanced material research, vol 795 pp 256-259, Transtech Publication, Switzerland
[43] Yao J, Sun Z, Zhang L, Natelson D, Tour J. M.: Resistive switches and memories from silicon oxide, Nano letters, pp 4105-4110 (2010)
[44] Xu W, Yang G, Gin L, liu J, Zhang Y, Jiang Z.: High-k polymer nanocomposites filled with hyperbranched pathalocyanine-coated BaTiO for high temperature and elevated field application, ACS Applied matter interfaces (2018)
[45] Song J. M., Lee J. S.: Self-assembled nano structured resistive switching memory device fabricated by templated bottom-up growth, Scientific reports 6, Article no: 18967 (2016)
[46] Noh Y. J., Baek Y. J., Hu Q, Kang C. J., Choi Y. J., Lee H. H., Yoon T. S.: Analog memristive and memcapacitive characteristics of Pt-Fe2-O3 core shell nanoparticles assembly on p+ - Si substrate, IEEE transactions on nanotechnology (2015)
[47] Tauseef A. R., Inamuddin, Mu N, Hamid A.: Synthesis and characterization of poly(3,4-ethylenedioxthiophene)-poly(styrenesulfonate)(PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchanger: analytical application in the selective separation of lead metal ions, Pages 556-568, 2015
[48] Nishi Y, Sarakura H, Kimoto T.: Appearance of quantum point contact inPt/NiO2/Pt resistive cell, Journal of materials research (2017)
[49] Panda D, Dhar A, Ray S. K.: Nonvolatile and unipolar resistive switching characteristics of pulse laser ablated NiO film, Journal of Applied Physics (2010)
[50] Kim S. G., Han J. S., Kim H., Kim S. Y., Jang H. W.: Recent advances of memristive materials for artificial synapses, Advanced materials technologies (2018)
[51] Khurana G., Kumar N., Scott J. F., Katiyar R S.: Graphene-oxide based memristor, Intech open Ltd (2018)
[52] Bae S. H., LeeS., Koo H., Lin L., Jo B. H., Park C., Wang Z. H.: The memristive properties of a single VO2 nanowire with switching controlled by self-heating, Advanced materials (2013)