IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 8 - Issue 11, November 2019 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Bias In The Maximum Likelihood Estimation Of Parameters Of Nonlinear Regression Models

[Full Text]

 

AUTHOR(S)

B. Mahaboob, B.Venkateswarlu, C. Narayana, M. Sivaiah

 

KEYWORDS

Bias, MLE(Maximum Likelihood Estimation), Multivariate Normal distribution, Variance-Covariance Matrix, Residual Vector, Linearity of Regression, Rank correlation coefficient.

 

ABSTRACT

Nonlinear model building has become an important tool in Predictive Analysis and Forecasting Theory. MLE is a phenomenon in which one can obtain unknown coefficients of a distribution by optimizing a likelihood function. Maximum likelihood estimate is the vector in parameter space which optimizes the likelihood function. This research article throws a light on the BIAS in the MLE of unknown coefficients of statistical models which are not linear. In addition to this a test for the linearity of regression has been proposed. If the ML function possesses derivatives one can apply first derivative test to obtain optimum values. But in some situations the equations of first degree of ML function are to be solved in explicit manner. For example in linear statistical model OLS estimator optimize the ML function. In vast number of cases advanced numerical techniques should be implemented in order to get ML function. As the application of ML technique is both flexible and intuitive this technique has become an indispensable tool in statistical inference.

 

REFERENCES

[1] Gauss M. Cordeiro, Klaus L.P. Vasuncellos and Maria Luuiza F. Santos (1998), “on the second order bias of parameter estimates in nonlinear regression models with student ‘t’ errors’, Journal of statistical
computation and Simulation, Vol. 60, issue 4.
[2] Mukesh Sharma, Rinku Agarwal (2003), “Minimum Likelihood method for parameter estimation in nonlinear models with below detection data”, Environmental and Ecological statistics, Vol.10, Issue4, and Pp: 445-454
[3] Man Chen, Zheng Zhang and Cencul (2016), “On the Bias of the maximum likelihood estimation of parameters of the Weibull distribution”, Mathematical and computational Applications.
[4] Ioannis Kormidis (2014), “Bias in parametric estimation reduction and useful side effects”, Wiley online library.
[5] Gauss M. Cordeiro, Silvia L.P. Ferrari, Mignel A. Uribe-opazo, Klaus L.P Vasconcellos (2000),” Corrected maximum likelihood estimation in a class of symmetric nonlinear regression models,” Statistics and Probability letters 46(4), Pp: 317-328.
[6] R.D. Cook, C. L. Tsai, B. C. Wei (1986), “Bias in nonlinear regression”, Biometrika, Vol.73, Issue (3), Pp: 615-623
[7] Halbert White (1981), “Consequences and detection of Mis-specified nonlinear regression models”, Vol. 76, Pp: 413-433.
[8] James G. MacKinnon (1983),”Tests for model specification in the presence of alternative hypothesis. Some further results”, Science Direct, Vol.21, issue (1), Pp: 53-70.
[9] A. Ronald Gallant (1975),”Seemingly unrelated nonlinear regressions, Journal of Economics, Vol. (3), and Pp: 35-50.
[10] Risto Heijmans, Heinz Neudeker (1998), “Estimation of the SURE model”, Statistical papers, springer Vol. (39), issue (4), Pp: 423-430.
[11] E.J. Kontoghiorghes, M.R.B. Clarke (1995), “An alternative approach for the numerical solution of SURE models”, Computational statistics and Data analysis, Vol. (19), issue (4), Pp: 369-377.
[12] Popli G.K (2000), “A note on the instrumental variable estimators in the nonlinear models”, Journal of Quantitative Economics, 16, Pp: 31-36.
[13] Venkateswarlu .B et.al (2011), “On problems of statistical modelling”, International journal Engineering science and Technology, Vol. (3), issue (6), Pp: 4914-4920
[14] Hanumantha Rao, S., Vasanta Kumar, V., Srinivasa Rao, T., & Srinivasa Kumar, B. (2016). A two-phase unreliable M/Ek/1 queueing system with server startup, N-policy, delayed repair and state dependent arrival rates. Global Journal of Pure and Applied Mathematics, 12(6), 5387-5399.
[15] [15] Rao, S. H., Kumar, V. V., Rao, T. S., & Kumar, B. S. (2016). M/M/1 two-phase gated queuing system with unreliable server and state dependent arrivals. International Journal of Chemical Sciences, 14(3), 1742-1754.
[16] . Appa Rao, B. V. (2016). Minimum energy control of Δ-differentiable positive matrix sylvester dynamical systems. International Journal of Chemical Sciences, 14(2), 751-761
[17] Appa Rao, B. V,& Vara Prasad, K. A. S. N. (2016). Controllability and observability of Sylvester matrix dynamical systems on time scales. Kyung pook Mathematical Journal, 56(2), 529539.doi:10.5666/KMJ.2016.56.2.529.
[18] Srinivasa Rao, T., Suresh Kumar, G., Vasavi, C., & Murty, M. S. N. (2016). Observability of fuzzy difference control systems. International Journal of Chemical Sciences, 14(4), 2516-2526.
[19] Vasavi, C., Suresh Kumar, G., & Murty, M. S. N. (2016). Fuzzy dynamic equations on time scales under generalized delta derivative via contractive-like mapping principles. Indian Journal of Science and Technology, 9(25) doi:10.17485/ijst/2016/v9i25/85323.
[20] Vasavi, C., Suresh Kumar, G., & Murty, M. S. N. (2016). Fuzzy hukuhara delta differential and applications to fuzzy dynamic equations on time scales. Journal of Uncertain Systems, 10(3), 163-180.
[21] Vasavi, C., Suresh Kumar, G., & Murty, M. S. N. (2016). Generalized differentiability and integrality for fuzzy set-valued functions on time scales. Soft Computing, 20(3), 1093-1104. doi:10.1007/s00500-014-1569-1
[22] Sobhanbabu, Y., Appa Rao, B. V., Srinivasa Rao, T., & Prasad, K. A. S. N. V. (2017). Reliability of matrix riccati type dynamical systems on time scales. International Journal of Civil Engineering and Technology, 8(12), 216-223
[23] Sobhanbabu, Y., Rao, B. V. A., Rao, T. S., & Prasad, K. A. S. N. V. (2017). Adaptive control and reliability on nabla settings. International Journal of Mechanical Engineering and Technology, 8(12), 316-324.
[24] Bindu, P., Sarala, Y., Srinivasa Rao, T., & Madhusudhana Rao, D. (2017). Complete left ideals in ternary semigroups. Proceedings of the Jangjeon Mathematical Society, 20(3), 347-351. doi:10.17777/pjms2017.20.3.347.
[25] Madhavi, R., Karri, R. R., Sankar, D. S., Nagesh, P., & Lakshminarayana, V. (2017). Nature inspired techniques to solve complex engineering problems. Journal of Industrial Pollution Control, 33(1), 1304-1311.
[26] Kumar, D., Rajyalakshmi, K., & Asadi, S. S. (2017). Digital marketing strategical role to promote technical education in andhra and telangana: An exploratory study. International Journal of Civil Engineering and Technology, 8(10), 197-206.
[27] . Kishore, G. N. V., Rao, K. P. R., & Bindu, V. M. L. H. (2017). Suzuki type unique common fixed point theorem in partial metric spaces by using (C): Condition with rational expressions. Afrika Matematika, 28(5-6), 793-803. Doi: 10.1007/s13370-017-0484-x.
[28] Vijay Prasad, S., Peter Praveen, J., Tiwari, A., Prasad, K., Bindu, P., Donthi, R., & Mahaboob, B. (2018). An application of LPP - graphical method for solving multi server queuing model. International Journal of Mechanical Engineering and Technology, 9(1066-1069), 1066-1069.
[29] Srinuvasa Rao, B., Kishore, G. N. V., Hari Krishna, Y., & Sarwar, M. (2018). Generalized (α,β) - rational contractions in ordered sb-metric spaces with applications. International Journal of Mechanical Engineering and Technology, 9(3), 272-282.
[30] .Kumar, P., & Keerthika, P. S. (2018). An inventory model with variable holding cost and partial backlogging under interval uncertainty: Global criteria method. International Journal of Mechanical Engineering and Technology, 9(11), 1567-1578.
[31] Rao, I. V. R., Mohammad, A. B., & Kumar, D. S. (2018). A novel image recognition method using multiple component resemblance score synthesis and genetic algorithm. Paper presented at the Journal of Physics: Conference Series, 1139(1) doi:10.1088/1742-6596/1139/1/012069.
[32] Nayagam, V. L. G., Jeevaraj, S., & Dhanasekaran, P. (2018). An improved ranking method for comparing trapezoidal intuitionistic fuzzy numbers and its applications to multicriteria decision making. Neural Computing and Applications, 30(2), 671-682. doi: 10.1007/s00521-016-2673-1
[33] Seetha, M. P., Sarala, Y., Jaya Lalitha, G., & Anjaneyulu, A. (2018). Ideal theory in a-ternary semi groups. International Journal of Civil Engineering and Technology, 9(3), 170-177.