IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 8 - Issue 11, November 2019 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Plant Cenh3 Evolution Is Congruent With The Phylogeny Of Plant Species

[Full Text]

 

AUTHOR(S)

Archana Pal, Vishal Singh Negi

 

KEYWORDS

CenH3, histones, centromere, plants, kinetochore, Bioconductor, Biomart, Ensembl.

 

ABSTRACT

Centromere plays a major role in the faithful segregation of chromosomes during cell division. This task is achieved by a large protein complex called kinetochore, which is made of several proteins. The centromere is characterized by a histone H3 variant popularly called CENP-A in humans and CenH3 in plants. CenH3 is one of the most rapidly evolving proteins, which is a paradoxical situation for a protein involved in essential biological function. Additionally, many of the kinetochore proteins found in mammals are missing or have extremely high divergence in plants. Therefore, understanding the phylogeny of CenH3 in plants is important for studying kinetochore assembly in plants. In this study, we utilized a computational approach using R and Bioconductor for a comprehensive study of plant CenH3. We found five major clades of plant CenH3 among which the N-terminus is highly divergent and the conserved regions were clustered in three domains. This study has revealed the detailed analyses of plant CenH3 and it will be useful for further investigation aiming at the determination of precise biological functions including its interaction with other proteins that help in the maintenance of centromere structure and function in plants.

 

REFERENCES

[1]. Dalal Y, Wang H, Lindsay S, Henikoff S. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS biology. 2007;5(8):e218.
[2]. Kuppu S, Tan EH, Nguyen H, et al. Point mutations in centromeric histone induce post-zygotic incompatibility and uniparental inheritance. PLoS genetics. 2015;11(9):e1005494.
[3]. Jiang J, Birchler JA, Parrott WA, Dawe RK. A molecular view of plant centromeres. Trends in plant science. 2003;8(12):570–575.
[4]. Dalal Y, Furuyama T, Vermaak D, Henikoff S. Structure, dynamics, and evolution of centromeric nucleosomes. Proceedings of the National Academy of Sciences. 2007;104(41):15974–15981.
[5]. Baker RE, Rogers K. Phylogenetic analysis of fungal centromere H3 proteins. Genetics. 2006;174(3):1481–1492.
[6]. Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nature structural & molecular biology. 2003;10(11):882.
[7]. Black BE, Bassett EA. The histone variant CENP-A and centromere specification. Current Opinion in Cell Biology. 2008;20(1):91-100. doi:10.1016/j.ceb.2007.11.007
[8]. Howman EV, Fowler KJ, Newson AJ, et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. PNAS. 2000;97(3):1148-1153. doi:10.1073/pnas.97.3.1148
[9]. Niikura Y, Kitagawa R, Kitagawa K. CENP-A ubiquitylation is inherited through dimerization between cell divisions. Cell reports. 2016;15(1):61–76.
[10]. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biology. 2004;5(10):R80. doi:10.1186/gb-2004-5-10-r80
[11]. Ihaka R, Gentleman R. R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics. 1996;5(3):299-314. doi:10.1080/10618600.1996.10474713
[12]. Racine JS. RStudio: A Platform-Independent IDE for R and Sweave. Journal of Applied Econometrics. 2012;27(1):167-172. doi:10.1002/jae.1278
[13]. Durinck S, Moreau Y, Kasprzyk A, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21(16):3439-3440. doi:10.1093/bioinformatics/bti525
[14]. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols. 2009;4(8):1184-1191. doi:10.1038/nprot.2009.97
[15]. Chamberlain SA, Szöcs E. taxize: taxonomic search and retrieval in R. F1000Res. 2013;2. doi:10.12688/f1000research.2-191.v2
[16]. Bodenhofer U, Bonatesta E, Horejš-Kainrath C, Hochreiter S. msa: an R package for multiple sequence alignment. Bioinformatics. 2015;31(24):3997-3999. doi:10.1093/bioinformatics/btv494
[17]. Charif D, Lobry JR. SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. In: Bastolla U, Porto M, Roman HE, Vendruscolo M, eds. Structural Approaches to Sequence Evolution: Molecules, Networks, Populations. Biological and Medical Physics, Biomedical Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007:207-232. doi:10.1007/978-3-540-35306-5_10
[18]. Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics. 2004;20(2):289-290. doi:10.1093/bioinformatics/btg412
[19]. Ginestet C. ggplot2: Elegant Graphics for Data Analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2011;174(1):245-246. doi:10.1111/j.1467-985X.2010.00676_9.x
[20]. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution. 2017;8(1):28-36. doi:10.1111/2041-210X.12628