In Silico Study Of Natural Compound Candidates As Promising Drugs For SARS-Cov-2
[Full Text]
AUTHOR(S)
Mostafa A. Hussien, Abeer A. Sharfalddin, Mariusz Jaremko
KEYWORDS
Molecular docking, SARS-CoV-2, Natural products, Saikosaponin C.
ABSTRACT
Molecular docking is a highly sophisticated method that has been utilized in drug design in various biological fields. We are currently suffering from the global pandemic caused by the new coronavirus (SARS-CoV-2), which advanced rapidly and needs immediate action. Therefore, to find an effective anti-viral drug for SARS-CoV-2, thirteen natural products with high bioactivities against another series of viruses were screened for their interactions with the SARS-CoV-2 at different stages of viral development using molecular docking. Among the investigated herbal medicines, Saikosaponin C exhibited the highest docking scores and strong and stable binding interactions with all chosen proteins. The practical binding energy score of Saikosaponin C was -11.79 KJ/mol with 1O86 protease, which represents ACE2, the first infection stage target protein. Moreover, it also showed strong binding (-11.4 KJ/mol) to proteases PLpro (Papain-like protease) PDB = 4OW0, which represents the last stage of virus replication in the host cell. Therefore, we suggest that, after further validation and investigation, this extracted molecule can be used as a potential inhibitor against SARS-CoV-2.
REFERENCES
[1]. W. Ji, W. Wang, X. Zhao, J. Zai and X. Li, Journal of medical virology 2020, 92, 433-440.
[2]. H. A. Rothan and S. N. Byrareddy, Journal of autoimmunity 2020, 102433.
[3]. M. Chan-Yeung and W. Yu, Bmj 2003, 326, 850.
[4]. a) C. P. Adams and V. V. Brantner, Health affairs 2006, 25, 420-428; b) J. A. DiMasi, R. W. Hansen and H. G. Grabowski, Journal of health economics 2003, 22, 151-185.
[5]. X. Yao, F. Ye, M. Zhang, C. Cui, B. Huang, P. Niu, X. Liu, L. Zhao, E. Dong and C. Song, Clinical Infectious Diseases 2020.
[6]. J. M. Sanders, M. L. Monogue, T. Z. Jodlowski and J. B. Cutrell, Jama 2020, 323, 1824-1836.
[7]. J. A. Al-Tawfiq, A. H. Al-Homoud and Z. A. Memish, Travel medicine and infectious disease 2020.
[8]. S. Shah, S. Das, A. Jain, D. P. Misra and V. S. Negi, International Journal of Rheumatic Diseases 2020, 23, 613-619.
[9]. F. E. Koehn and G. T. Carter, Nature reviews Drug discovery 2005, 4, 206-220.
[10]. L.-T. Lin, W.-C. Hsu and C.-C. Lin, Journal of traditional and complementary medicine 2014, 4, 24-35.
[11]. L. Yang and J.-G. Jiang, Pharmaceutical Biology 2009, 47, 1154-1161.
[12]. J.-F. Liao, W.-F. Chiou, Y.-C. Shen, G.-J. Wang and C.-F. Chen, Chinese Medicine 2011, 6, 6.
[13]. B. M. Kim, Oxidative medicine and cellular longevity 2018, 2018.
[14]. P. W. Cheng, L. T. Ng, L. C. Chiang and C. C. Lin, Clinical and Experimental Pharmacology and Physiology 2006, 33, 612-616.
[15]. T. Sadikov and T. Shakirov, Chemistry of Natural Compounds 1972, 8, 140-140.
[16]. D. Lamoral-Theys, C. Decaestecker, V. Mathieu, J. Dubois, A. Kornienko, R. Kiss, A. Evidente and L. Pottier, Mini reviews in medicinal chemistry 2010, 10, 41-50.
[17]. J. C. Cedrón, D. Gutiérrez, N. Flores, Á. G. Ravelo and A. Estévez-Braun, Bioorganic & medicinal chemistry 2010, 18, 4694-4701.
[18]. G. S. Çitoğlu, Ö. B. Acıkara, B. S. Yılmaz and H. Özbek, Fitoterapia 2012, 83, 81-87.
[19]. Y.-C. Hwang, J. J.-H. Chu, P. L. Yang, W. Chen and M. V. Yates, Antiviral research 2008, 77, 232-236.
[20]. S.-y. Li, C. Chen, H.-q. Zhang, H.-y. Guo, H. Wang, L. Wang, X. Zhang, S.-n. Hua, J. Yu and P.-g. Xiao, Antiviral research 2005, 67, 18-23.
[21]. J. Renard-Nozaki, T. Kim, Y. Imakura, M. Kihara and S. Kobayashi, Research in virology 1989, 140, 115-128.
[22]. H. Chen, Z. Lao, J. Xu, Z. Li, H. Long, D. Li, L. Lin, X. Liu, L. Yu and W. Liu, Virology 2020.
[23]. F. Li, X. Song, G. Su, Y. Wang, Z. Wang, J. Jia, S. Qing, L. Huang, Y. Wang and K. Zheng, Viruses 2019, 11, 466.
[24]. D. Majumder, A. Das and C. Saha, International Journal of Biological Macromolecules 2017, 104, 929-935.
[25]. K. H. Miean and S. Mohamed, Journal of agricultural and food chemistry 2001, 49, 3106-3112.
[26]. T. E. Guon and H. S. Chung, Oncology letters 2016, 11, 2463-2470.
[27]. H. A. Jung, J. E. Kim, H. Y. Chung and J. S. Choi, Archives of pharmacal research 2003, 26, 279-285.
[28]. S. Shin, Y. Lee, S. R. Moon, I. H. Koo, H. Hong, E. Shin, M. Lee, J. Park and H. S. Chung, Journal of the Korean Society for Applied Biological Chemistry 2010, 53, 716-723.
[29]. G. M. Morris and M. Lim-Wilby in Molecular docking, Springer, 2008, pp. 365-382.
[30]. A. M. Dar and S. Mir, J Anal Bioanal Tech 2017, 8, 1-3.
[31]. A. Pozzan, Current pharmaceutical design 2006, 12, 2099-2110.
[32]. MOE (The Molecular Operating Environment) in software available from Chemical Computing Group Inc., 1010 Sherbrooke Street West, Suite 910, Montreal, Canada H3A 2R7, Vol. 2015,.
[33]. A. Sajib, Preprints 2020.
[34]. S. Pal and A. Talukdar, 2020.
[35]. P. T. Mpiana, D. S. Tshibangu, J. T. Kilembe, B. Z. Gbolo, D. T. Mwanangombo, C. L. Inkoto, E. M. Lengbiye, C. M. Mbadiko, A. Matondo and G. N. Bongo, Chemical Physics Letters 2020, 754, 137751.
[36]. E. Corner, I. Geis and D. Goodsell, 2020.
[37]. a) M. A. Hussien and A. E. Abdelaziz, Network Modeling Analysis in Health Informatics and Bioinformatics 2020; b) A. A. Sharfalddina, A.-H. Emwasb, M. Jaremkoc and M. A. Hussien, Applied Organometallic Chemistry 2020.
[38]. N. D. Al-Khathami, K. S. Al-Rashdi, B. A. Babgi, M. A. Hussien, M. N. Arshad, N. E. Eltayeb, S. E. Elsilk, J. Lasri, A. S. Basaleh and M. Al-Jahdali, Journal of Saudi Chemical Society 2019, 23, 903-915.
[39]. M. H. Abdel-Rhman, M. A. Hussien, H. M. Mahmoud and N. M. Hosny, Journal of Molecular Structure 2019, 1196, 417-428.
[40]. N. Rahman, Z. Basharat, M. Yousuf, G. Castaldo, L. Rastrelli and H. Khan, Molecules 2020, 25, 2271.
[41]. M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler, N.-H. Wu and A. Nitsche, Cell 2020.
[42]. C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li and X. Li, Acta Pharmaceutica Sinica B 2020.
|