IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 10 - Issue 11, November 2021 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Different Concentration Organic Carbon Of Waste Cassava In Mixotrophic Cultivation On Growth Of Dunaliella Sp.

[Full Text]

 

AUTHOR(S)

Prive Widya Antika, Happy Nursyam, Arning Wilujeng Ekawati

 

KEYWORDS

Microalgae, System Culture, Glucose, Enzyme.

 

ABSTRACT

Dunaliella sp. is one type of green microalgae that can be used as natural food because it is easy to digest. In mixotrophic culture, microalgae in their growth carry out the process of photosynthesis and use organic carbon nutrients to produce energy. Choice of organic carbon sources for growing Dunaliella sp. using waste cassava. The organic carbon content in waste cassava is still very complex, so that Dunaliella sp. for its growth, it can be done by breaking down carbohydrates into simple glucose using hydrolysis with the addition of a-amylase and glucoamylase enzymes. This research has 2 stages, stage 1 is the hydrolysis of waste cassava using a-amylase and glucoamylase enzymes. Phase 2 research on microalgae Dunaliella sp. mixotrophic cultured using organic carbon as a source of glucose from the hydrolysis of waste cassava. The results showed that the administration of the enzyme a-amylase 3.15 µl/g and glucoamylase 2.10 µl/g was able to break down carbohydrates into glucose in waste cassava by producing a glucose level of 34,285 mg/L. The administration of glucose organic carbon from different waste cassava under mixotrophic cultured significantly affected the growth of Dunaliella sp. The best glucose concentration was 0.30 g/l with the highest average density of 6.5 x 106 cells/ml, the specific growth rate was 1.04 days-1 with a doubling time of 0.66 days.

 

REFERENCES

[1] Bhola, V., M. Singh., F. Swalaha., F. Bux dan R. Ranjith Kumar. 2014. Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol. 11: 2103-2118.
[2] Widiana, A., A. Kusumorini dan S. Handayani. 2013. Potensi fitoplankton sebagai sumber daya pakan pada pemeliharaan larva ikan mas (Cyprinus carpio) di bbpbat Sukabumi. Jurnal Biologi. 6 (2) : 108-112.
[3] Preetha, K., L. John., C. S. Subin dan K. K. Vijayan. 2012. Phenotypic and genetic characterization of Dunaliella (Chlorophyta) from Indian salinas and their diversity. Aquatic Biosystems. 8 (27) : 1-17
[4] Tjokorde, A. S., S. R. Boedi dan E. M. Dewi. 2013. Pengaruh konsentrasi pupuk lemnaminor terhadap populasi Dunaliella sp. Jurnal Ilmiah Perikanan dan Kelautan. 5 : 61-66.
[5] Barkia, I., N. Saari dan S. R. Manning. 2019. Microalgae for high-value products towards human health and nutrition. Marine Drugs. 17 : 2-29.
[6] Juneja, A., R. M. Ceballos dan Ganti S. Murthy. 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies. 6 : 4607-4638.
[7] Zhan, J., J. Rong dan Q. Wang. 2016. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal Of Hydrogen Energy. 30 : 1-13.
[8] Pal, P., K. W. Chew., H. W. Yen., J. W. Lim., M. K. Lim dan P. L. Show. 2019. Cultivation of Oily Microalgae for the Production of Third-Generation Biofuels. Sustainability. 11 : 1-16.
[9] Salim, M. A. 2015. Kadar lipida Scenedesmus sp pada kondisi miksotrof dan penambahan sumber karbon dari hidrolisat pati singkong. 9 (2) : 222-243.
[10] Bansal, S. 2019. Mixotrophic growth of Chlorella Sp. using glycerol for the production of biodiesel: a review. Mapana Journal of Sciences. 18 (2) : 1-12.
[11] Pereira, I., A. Rangel., B. Chagas., B. D. Moura., S. Urbano., R. Sassi., F. Camara dan C. Castro. 2021. Microalgae Growth under mixotrophic condition using agro-industrial waste: a review. Intech Open : 1-18.
[12] Antika, R., S. Hudaidah dan L. Santoso. 2014. Penggunaan tepung onggok singkong yang difermentasi dengan Rhizopus sp. sebagai bahan baku pakan ikan nila merah (Oreochromis niloticus). Jurnal Rekayasa dan Teknologi Budidaya Perairan. 2 (2) : 279-284.
[13] Febrianti, T., Oedjijono dan N. Iriyanti. 2017. Peningkatan nutrien onggok dan dedak sebagai bahan baku pakan melalui fermentasi menggunakan Azospirillum sp. JG3. Widyariset. 3 (2) : 173 – 182.
[14] Sutikno., Marniza., Selviana dan N. Musita. 2016. Pengaruh konsentrasi enzim selulase, a–amilase dan glukoamilase terhadap kadar gula reduksi dari onggok. Jurnal Teknologi Industri & Hasil Pertanian. 21 (1) : 1-12.
[15] Kong, W.B., Hong Yang., Yun-Tao Cao., Hao Song., Shao-Feng Hua and Chun-Gu Xia. 2013. Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technol Biotechnol. 51 (1) : 62–69.
[16] Armanda, D. T. 2013. Pertumbuhan kultur mikroalga diatom Skeletonema costatum (Greville) cleve isolat jepara pada medium f/2 dan medium conway. Bioma. 2 (1): 49-63.
[17] Makkasau, A., M. Sjahrul., M. N. Jalaluddin dan I. Raya. 2011. Teknik fitoremediasi fitoplankton suatu alternatif pemulihan lingkungan laut yang tercemar ion logam Cd2+ dan Cr6+. Pendidikan Guru. 7 (2) : 155168.
[18] Fakhri, M. dan N. B. Arifin. 2016. Karakteristik pertumbuhan Tetraselmis sp. dan Nannochloropsis sp. Jurnal Perikanan Universitas Gadjah Mada. 18 (1): 15-18.
[19] Dehkordi, M. M and F. A. Javan. 2012. Application of alpha-amylase in biotechnology. Journal of Biology and today's world. 1 (1) : 39-50.
[20] Hii, S. L., J. S. Tan., T. C. Ling and A. B. Ariff. 2012. Pullulanase: role in starch hydrolysis and potential industrial applications. Hindawi Publishing Corporation. 1-14.
[21] Robinson, P. K. 2015. Enzymes: principles and biotechnological applications. Essays Biochem. 59 : 1–41.
[22] Dong, J. 2021. On catalytic kinetics of enzymes. Processes. 9. 1-21.
[23] Meritasari, D., A. S. Mubarok., L. Sulmartiwi dan E. D. Masithah. 2012. Pengaruh pemberian pupuk cair limbah ikan lemuru (Sardinella sp.) dengan dosis yang berbeda terhadap pertumbuhan Chlorella sp. Jurnal Ilmiah Perikanan dan Kelautan. 4 (1) : 27-32.
[24] Bariyyah, S. K., A. G. Fasya., M. Abidin dan A. Hanapi. 2013. Uji aktivitas antioksidan terhadap DPPH dan identifikasi golongan senyawa aktif ekstrak kasar mikroalga Chlorella sp. hasil kultivasi dalam medium ekstrak tauge. Alchemy. 2 (3) : 150-204.
[25] Suantika, G dan D. Hendrawandi. 2009. Efektivitas teknik kultur menggunakan sistem kultur statis, semi-kontinyu, dan kontinyu terhadap produktivitas dan kualitas kultur Spirulina sp. Jurnal Matematika Dan Sains. 14 (2) : 41-50.
[26] Musa, B., I. Raya dan S. Dali. 2013. Pengaruh penambahan ion Cu terhadap laju pertumbuhan fitoplankton Chlorella vulgaris. Balqis Kisong. 1-8.
[27] Bajwa, K., S. T. Smita and N. R. Bishnoi. 2016. Effect of glucose supplementation and mixotrophic effects of glycerol and glucose on the production of biomass, lipid yield and different physiological, biochemical attributes of Chlorella pyrenoidosa. J. Algal Biomass. 7 (1) : 93-103.
[28] Li, T., Y. Zheng., L. Yu and S. Chen. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass and Bioenergy. 30 : 1-10.
[29] Bahri, S., M. Mirzan dan M. Hasan. 2012. Karakterisasi enzim amilase dari kecambah biji jagung ketan (Zea mays ceratina L.). Jurnal Natural Science. 1 (1) : 132-143.