International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us

IJSTR >> Volume 2- Issue 12, December 2013 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Experimental Investigation Of Mixed Convection With Water-Al2O3 & Hybrid Nanofluid In Inclined Tube For Laminar Flow

[Full Text]



Gaffar G. Momin



Keywords: Heat transfer, Laminar flow, Mixed convection , Nanofluid , Nanoparticles , Al2O3-water mixture,Al2O3–Cu hybrid nano particles, Hydrogen reduction technique, Laminar flow , Hybrid nanofluid , Heat transfer enhancement, Friction factor.



ABSTRACT: Two experiments were carried out.first to study mixed convection Al2O3 water nano fluidinside an inclined copper tube surface. The effects of nanoparticles concentration and power supply on the development of the thermal field are studied and discussed under laminar flow condition. Results show that the experimental heat transfer coefficient decreases slightly with an increase of particle volume concentration from 0 to 4%. Two new correlations are proposed to calculate the Nusselt number in the fully developed region for horizontal and vertical tubes volume concentrations up to 4%.and In second experimental work, a fully developed laminar convective heat through a uniformly heated circular tube using Al2O3-Cu/water hybrid nanofluid is presented. For this we synthesized Al2O3-Cu nanocomposite powder in a thermo chemical route that involves a hydrogen reduction technique and then dispersed the prepared hybrid nano powder in deionised water to form a stable hybrid nanofluid of 0.1% volume concentration. The convective heat transfer experimental results showed a maximum enhancement of 13.56% in Nusselt number at a Reynolds number of 1730 when compared to Nusselt number of water. The experimental results also show that 0.1% Al2O3-Cu/ water hybrid nanofluids have slightly higher friction factor when compared to 0.1% Al2O3/water nanofluid. The empirical correlations proposed for Nusselt number and friction factor are in good agreement with the experimental data.



[1]. Experimental study of mixed convection with watereAl2O3 nanofluid in inclined tube with uniform wall heat flux R. Ben Mansour a,b,*, N. Galanis b, C.T. Nguyen c2010 Published by Elsevier Masson SAS.

[2]. Effect of Al2O3–Cu/water hybrid nanofluid in heat transferS. Suresh a,⇑, K.P. Venkitaraj a, P. Selvakumar a, M. Chandrasekar b 2011 Elsevier Inc.

[3]. S. Lee, S.U.-S. Choi, Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems PVP-Vol. 342/MD-Vol. 72. ASME Pub., 1996, pp. 227e234.

[4]. P. Keblinski, J.A. Eastman, D.G. Cahill, Nanofluids for thermal transport. Mater.Today (2005) 36e44.

[5]. R. Chein, G. Huang, Analysis of microchannel heat skin performance using nanofluids. Appl. Therm. Eng. 25 (Issues 17e18) (2005) 3104e3114.

[6]. P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow insuspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transfer 45(2002) 855e863.

[7]. J.A. Eastman, S.U.-S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increaseeffective thermal conductivities of ethylene glycol-based nanofluids containingcopper nanoparticles. Appl. Phys. Lett. 78 (No 6) (2001) 718e720.

[8]. Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow21 (2000) 58e64.

[9]. Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids.Int. J. Heat Mass Transfer 43 (2000) 3701e3707.

[10]. A.R.A. Khaled, K. Vafai, Heat transfer enhancement through control of thermal dispersion effects. Int. J. Heat Mass Transfer 48 (No. 11) (2005) 2172.

[11]. B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer 11 (No. 2) (1998)151e170.

[12]. X. Wang, X. Xu, S.U.-S. Choi, Thermal conductivity of nanoparticles-fluidmixture. J. Thermophys. Heat Transfer 13 (No. 4) (1999) 474e480.

[13]. J.A. Eastman, S.U.-S. Choi, S. Li, G. Soyez, L.J. Thompson, R.J. DiMelfi, Novelthermal properties of nanostructured materials. J. Metastable NanocrystMater 2-6 (1999) 629e634.

[14]. C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, Boucher, S. H. Angue Mintsa, Mesure De Viscosité Pour Nanofluides Al2O3/Eau e PhénomèneD’hystérésis, VIIIème Colloque Franco-Québécois sur la Thermique des Systèmes,(Mai 2007) Montréal, ART-01e01.

[15]. Q.X. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids:a review. Int. J. Therm. Sci. 46 (No.1) (2006) 1e19.

[16]. Q. Li, Y. Xuan, Convective heat transfer performances of fluids with nanoparticles,Proc. 12th Int. Heat Transfer Conference, Grenoble, France, 2002483e488.

[17]. D. Wen, Y. Ding, Experimental investigation into convective heat transfer ofnanofluids at the entrance region under laminar flow conditions. Int. J. HeatMass Transfer 47 (2004) 5181e5188.

[18]. Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int. J.Heat Mass Transfer 48 (No. 6) (2005) 1107e1116.

[19]. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluid. Int. J. Heat Mass Transfer 46 (2003) 3639e3653.

[20]. R. Ben Mansour, N. Galanis, C.T. Nguyen, Developing laminar mixed convection of nanofluids in an inclined tube with uniform wall heat flux. Int. J. Num.Meth. Heat Fluid Flow 19 (n. 2) (2009) 146e164.

[21]. N. Putra, W. Roetzal, S.K. Das, Natural convection of nano-fluid. Heat Mass Transfer 39 (2003) 775e784.

[22]. D. Wen, Y. Ding, Natural convective heat transfer of suspension of titanium dioxide nanoparticles (nanofluids). IEEE Trans. Nanotechnol. 5 (3) (2006) 220e227.

[23]. S.Z. Heris, S.G. Etemad, M.N. Esfahany, Exprimental invistegation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. Heat Mass Transfer 33 (2006) 529e535.

[24]. W. Daungthongsuk, S. Wongwises, A critical review of convective heat transfer of nanofluids. Renew. Sustain. Energ. Rev. 11 (2007) 797e817.

[25]. S. Kakac, R.K. Shah, W. Aung, Handbook of Single ePhase Convective HeatTransfer. Wiley, New York, 1987.

[26]. R. Ben Mansour, N. Galanis, C.T. Nguyen, Developing laminar mixed convection of nanofluids in a horizontal tube with uniform wall heat flux, Proc. 13th IHTC, Sydney NSW, Australia, 2006 13e18.

[27]. B.S. Petukhov, A.F. Polyakov, Effect of free convection on heat transfer during forced flow in a horizontal pipe. High Temp. Res. Ins. 5 (1966) 348e351.

[28]. R. Ben Mansour, N. Galanis, C.T. Nguyen, Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids. Appl. Therm. Eng. 27 (no. 1) (2007) 240e249.

[29]. G. Polidori, S. Fohanno, C.T. Nguyen, A note on heat transfer modeling of Newtonian nanofluids in laminar free convection. Int. J. Therm. Sci. 46 (no. 8) (2007) 739e744.

[30]. R. Ben Mansour, N. Galanis, C.T. Nguyen, Experimental Study of Mixed Convection Laminar Flow of Water-Al2O3 Nanofluid in Horizontal Tube with Uniform Wall Heat Flux. Proc. 5th IASME/WSEAS Int. Conf. on Fluid Mechanics and Aerodynamics, Greece, August 24-26, 2007.