IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 3- Issue 1, January 2014 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Efficiency Improvement Of Crystalline Silicon Solar Cells By Optimizing The Doping Profile Of Pocl3 Diffusion

[Full Text]

 

AUTHOR(S)

Hocine Ghembaza, Abdellatif Zerga, Rachid Saim

 

KEYWORDS

Index Terms: Crystalline silicon solar cells, Emitter, Phosphorus, POCl3 diffusion.

 

ABSTRACT

Abstract: The emitter formation constitutes a crucial step in the manufacturing of the crystalline silicon solar cells. Several techniques are used in the photovoltaic industry and the most well-known one is based on the POCl3 diffusion in cylindrical quartz tube. Despite the efficiency of this technique to be reproducible, economic and simple, it presents the major inconvenient to have a heavily doped region near the surface which induces a high minority carrier recombination. To limit this effect, an optimisation of diffused phosphorous profiles is required. Our modelling of phosphorus profiles is summarized in the presence of an erfc distribution near to the surface and other Gaussian distribution in the bulk region of the emitter. However, this work is devoted to study the effects of the temperature, diffusion time, surface concentration and doping profile on the crystalline silicon solar cells performances by using the new parameters. The first results of our numerical modelling carried out by the Silvaco Atlas® simulation package show the possibility to improve the efficiency by 2.78%. This result is also confirmed by the IQE calculus which present an obvious enhancement in short wavelength region (380-450nm) about 23%.

 

REFERENCES

[1] M. Yoshida et al., J. App. Phy., vol. 45, pp. 1498, 1974.

[2] F. J. Bisschop, L. A. Verchalf and W. C. Sinke, IEEE Trans. On Electron Devices, vol. 33, no. 2, pp. 240-248, 1986.

[3] J. Park, A. Newgroschel and F. A. Lindholm, IEEE Trans. On Electron Devices, vol. 37, no. 2, pp. 358-363, 1991.

[4] S. T. Dunham, J. Electrochem. Soc., vol. 139, pp. 2628-2636, 1992.

[5] H. Bracht, Phys. Rev. B, vol. 75, pp. 035211 (1-15), 2007.

[6] H. Wagner et al., Proc. 37th IEEE Photovoltaic Specialists Conf., Seattle, USA, 2011.

[7] Silvaco® international Inc., Athena and Atlas User’s Manuel., 2008.

[8] A. Zerga et al., Proc. 21st EPVSEC Conf., Dresden, Germany, 2006.

[9] C. Bertram et al., Proc. of the 24th European Solar Energy Conference and Exhibition, Hamburg, Germany, 2009.

[10] R. R. King, R. A. Sinton, and R. M. Swanson, IEEE Trans. On Electron Devices, vol. 37, no. 2, pp. 365-371, 1990.

[11] A. Cuevas and M. Balbuena, Proc. 20th IEEE Photovoltaic Specialists Conf., 1988, pp. 429-434.

[12] A. Cuevas, Proc. 22nd IEEE Photovoltaic Specialists Conf., New York, USA, 1991, pp. 466-470.

[13] Y. Komatsu, et al., Proc. 25th EU PV Solar Energy Conference, Valencia, Spain, 2010, pp. 1924-1929.

[14] Y. Komatsu, et al., Proc. 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, 2009.

[15] A. Bentzen, PhD dissertation, Oslo Univ., Norway, 2006.

[16] P. Sana, J. Salami, and A. Rohatgi., IEEE Trans. On Electron Devices, vol. 40, pp. 1461-1468, 1993.

[17] P. Kittidachachan et al., Proc. 31st IEEE Photovoltaic Specialists Conf., USA, 2005, pp. 1103-1106.

[18] F. Book, et al., Proc. 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, 2009.

[19] W. Saule, et al., Proc. 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, 2009.

[20] A. Cuevas, M. A. Balbuena and R. Galloni, Proc. 19th IEEE Photovoltaic Specialists Conf., New York, USA, 1987.

[21] A. Bentzen and A. Holt., Proc. 31st IEEE Photovoltaic Specialists Conf., USA, 2005, pp. 1153-1156.

[22] A. Bentzen et al., Progress in photovoltaic: Research and Applications, vol. 15, pp. 281-289, 2007 .

[23] B. B. Bachi et al., Proc. 23rd European PV Solar Energy Conference, Valencia, Spain, 2008, pp. 1793-1796.

[24] H. Uchida et al., IEEE Trans., vol. 07, pp. 194-197, 1998.

[25] G. Masetti, S. Solmi, and G. Soncini, Philos. Magazine, vol. 33, 613, 1976.

[26] P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys., vol. 61, 289, 1976.

[27] S. Suziki et al., Proc. 25th EUPVSEC Conf., Valencia, Spain, 2010, pp. 2448-2451.

[28] B. Bazar Bachi, PhD Thesis, Insa Lyon Univ., France, 2010.

[29] P. K. Basu et al., Journal of the Korean Physical Society, vol. 46, no. 5, pp. 1237-1242, 2005.

[30] H. Ghembaza, A. Zerga and R. Saim, Energy Procedia – Elsevier, vol. 18, pp. 735-742, 2012, doi:10.1016/S1876-6102(12)00986-1.

[31] P. A. Basore, Proc. 23rd IEEE Photovoltaic Specialists Conf., Louisville, USA, 1993, pp. 147.