International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us

IJSTR >> Volume 3- Issue 12, December 2014 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Radiation Dosimetry By Tlds Inside Human Body Phantom While Using 192Ir HDR In Breast Brachytherapy

[Full Text]



Mahmoud Suleiman Ahmed Dahoud, Iskandar Shahrim Mustafa



Index Terms: Radiation, Dosimetry, TLD 100, TLD 100H, Brachytherapy.



Abstract: Radiation dose delivery to infected or healthy organs inside human body takes high efforts in recent studies and researches by scientists. Dosimeters took a part of their concerning to do an acceptable results due to accurate readings. TLDs is one of the most accurate and suitable dosimeters to be used in human body phantom or in mathematical computer simulation phantom used by Monte Carlo simulation program. Sensitivity, linearity, ability to reuse, fading, accuracy, dimensions, use, dose range stability, application, independency, and other properties can affect choosing suitable dosimeter in a certain application of radiation treatment.



[1] Tsoulfanidis, N., “Measurement and Detection of Radiation”, USA: Hemisphere Publishing Corporation,1983.

[2] ICRU,”Quantification and Reporting of Low-Dose and other Heterogeneous Exposures”, (t. I. Measurements, Ed.) Journal of the ICRU , 11 (2).

[3] Rivard, M. J., Venselaar, J. L., & Beaulieu, L.,” The Evolution of Brachytherapy Treatment Planning”. Med Phys , vol.36 , no.6, pp. 2136-2153,2011.

[4] Perera, H., Williamson, J. F., Monthofer, S. P., Binns, W. R., Klarmann, J., Fuller, G. L., et al., “Rapid Two-Dimensional Dose Measurement In Brachytherapy Using Plastic Scintillator Sheet: Linearity, Signal-to-Noise Ratio, and Energy Response Characteristics”, Int J Radiat Oncol Biol Phys , vol.23,no.5,pp.1059-1069,1992.

[5] Lambert, J., Nakano, T., Law, S., Elsey, J., McKenzie, D. R., & Suchowerska, N.,” In Vivo Dosimeters for HDR Brachytherapy: a Comparison of a Diamond Detector, MOSFET, TLD, and Scintillation Detector”, Med. Phys.,vol.34,no.5,pp. 1759,2007.

[6] Qi, Z. Y., Deng, X. W., Huang, S. M., Lerch, M., Cutajar, D., & Rosenfeld, A., ‘Verification of the Plan Dosimetry for High Dose Rate Brachytherapy Using Metal-Oxide-Semiconductor Field Effect Transistor Detectors”, Med Phys, vol.34, no.6, pp.2007-2013, 2007.

[7] Chen, R., & Pagonis, V.,” Thermally and Optically Stimulated Luminescence: A Simulation Approach”, USA: John Wiley & Sons,2011.

[8] Shindle, K. N., Dhoble, S. J., Swart, H. C., & Park, K.,” Phosphate Phosphors for Solid-State Lighting”, Berlin: Springer, 2012.

[9] Scholz, M., “Dose Response of Biological System to Low-and High-Let Radiation”, In Y. Horowitz, Microdosimetric Response of Physical and Biological Systems to Low- and High-LET Radiations: Theory and Applications to Dosimetry (1st ed.). Netherlands: Elsevier, 2006.

[10] HKUST, “How Does Thermoluminescent Dosimetry Work”, Feb.2007, Retrieved Oct 9, 2014, from HKUST: http://www.ab.ust.hk/hseo/tips/rp/rp002 .htm.

[11] Olko, P., “Microdosimetric Interpretation of Photon Energy Response in TL System”, In Y. Horowitz, Microdosimetric Response of Physical and Biological Systems to Low- and High-LET Radiations: Theory and Applications to Dosimetry (1st ed.). Netherlands: Elsevier, 2006.

[12] da Rosa, L. A., & Caldas, L. V., “ On the thermoluminescence of LiF from 83 to 320 K”, Journal of Applied Physics ,vol.84,no.12,pp.6841-6851,1998.

[13] IAEA, Radiation Oncology Physics: a Handbook for Teachers and Studens. Vienna: IAEA, 2005.

[14] Bidmead, M., Briot, E., Burger, J., Ferreira, I., Grusell, E., Kirisits, C., et al., “A Practical Guide to Quality Control of Brachytherapy Equipment “, (1st ed.). (Venselaar, & P. Calatayud, Eds.) Belgium: ESTRO, 2004.

[15] Nath, R., Meigooni, A. S., & Meli, J. A.,’ Dosimetry on Transverse Axes of 125I and 192Ir Interstitial Brachytherapy Sources’. Med Phys ,vol.17,no.6, pp.1032-1040, 1990.

[16] uz Zaman, M., Fatima, N., Naqvi, M., Parveen, R., & Sajjad, Z.,” Radiation Dosimetry: froThermoluminescence Dosimeter (TLD) to Optically Stimulated Luminescence Dosimeter (OSLD)”, PJR , vol.21,no.3, pp.107-109,2011.

[17] Kirov, A., Williamson, J. F., Meigooni, A. S., & Zhu, Y., TLD,” Diode and Monte Carlo Dosimetry of an 192Ir Source for High Dose-Rate Brachytherapy”, Phys Med Biol , vol.40,no.12, pp. 2015-2036,1995.

[18] Hufton, A. P., “Practical aspects of thermoluminisence dosimetry : proceedings of the Hospital Physicists' Association meeting on practical aspects of TLD”, held at the University of Manchester on 29th March. In A. P. Hufton (Ed.), Practical aspects of TLD. 43. London: The Hospital Physicists' Association,1984.

[19] Savva, A.,” Personal TLD Monitors, their Calibration and Response Surrey” , UK: Master Dissertation, University of Syrrey, 2010.

[20] Moscovitch, M., John, T. J., Cassata, J. R., Blake, P. K., Rotunda, J. E., Ramlo, M., et al.,” The Application of Lif:Mg,Cu,P to Large Scale Personnel Dosimetry: Current Status and Future Directions’, Radiat Prot Dosimetry , vol.119, nos. (1-4), pp.248-254, 2006.

[21] Lou, L. Z., & Rotunda, J. E.,” Performance of Harshaw TLD-100H two-element Dosemeter. Radiat Prot Dosimetry” , vol.120,nos.(1-4), pp.324-330, 2006.

[22] Ramlo, M., Moscovitch, M., & Rotunda, J. E.,” Further Studies in the Reduction of Residual in Harshaw TLD-100H (LiF:Mg,Cu,P)”, Radiat Prot Dosimetry , vol.125, nos.(1-4), pp.217-219, 2007.

[23] McKeever, J., Macintyre, D., Taylor, S. R., McKeever, S. W., Horowitz, A., & Horowitz, Y.,” Diffuse-Reflectance and Transmission Measurements on LiF:Mg,Cu,P Powders and Single-Crystals”, Radiat Prot Dosimetry ,vol. 47, pp.123-127,1993.

[24] Bilski, P.,” Lithium Fluoride: from LiF:Mg,Ti to LiF:Mg,Cu,P. Radiat Prot Dosimetry” , vol.100, nos.(1-4), pp.199-206, 2002.

[25] Herr, A. D.,’ Phototransfer Thermoluminescence Applied to the Reestimation of Low Dose Levels of Ionizing Radiation for Personnel Dosimetry”, Washington, DC, USA: Master Dissertation, Georgetown University, 2010.

[26] Bilski, P., “Response of Various LiF thermoluminescent Detectors to High Energy Ions – Results of the ICCHIBAN Experiment”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms , vol.251,no.1, pp.121-126, 2006.

[27] Dam, J. V., & Morenello, G.,” Methods for in Vivo Dosimetry in External Radiotherapy”, (2nd ed.). Brussels: ESTRO, 2006.

[28] Moura, E. S., Zeituni, C. A., Manzoli, J. E., Moura, J. A., Feher, A., Souza, C. D., et al., “ About TLD-100 Glow Curve Manipulation to Achieve Dosimetric Parameters of I-125 Seeds Used for Brachytherapy”, International Nuclear Atomic Conference-INAC Sep 27 to October 2, 2009 (pp. 1-9). Rio de Janeiro,RJ: Associacao Brasilei Ra de Energia Nuclear-ABEN,2009.

[29] Yu, C., & Luxton, G., “TLD Dose Measurement: A Simplified Accurate Technique for the Dose Range from 0.5 cGy to 1000 cGy”, Med Phys , vol.26, no.6, pp.1010-1016,1999.

[30] IAEA , “ Development of Procedures for In Vivo Dosimetry in Radiotherapy” , IAEA Human Health Reports No.8, Vienna.,2013. Available at http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1606_web.pdf. date of access 2 Nov 2014.

[31] Zimmerman D. W., Rhyner C. R., and Cameron J. R.,” Thermal annealing effects on the thermoluminescence of LiF”, Health Phys. Vol.12, pp.525–531,1966.

[32] Booth,L.F., Johnson T. L., and Attix F. H., ‘‘Lithium fluoride glow-peak growth due to annealing,’’ Health Phys.vol. 23, pp.137–142 ,1972.

[33] Chen, R., & McKeever, S. W., “Theory of Thermoluminescence and Related Phenomena”. Singapore: World Scientific, 1997.

[34] Abou-Elenein, H. S., Attalla, E. M., Elmoniem, G. A., Eldesoky, I., & Farouk, M.,” Dosimetry Verification of The Gammacell 1000 Blood Irradiator Using Thermoluminescent Dosimeter (TLD)”. Sci-Afric Journal of Scientific Issues, Research and Essays, vol.2, no.9, pp.383-386, 2014.

[35] Kry S. F., Price M., Followill D., Mourtada F., and Salehpour M.,” The Use of LiF (TLD-100) as an Out-of-Field Dosimeter”, Journal of Applied Clinical Medical Physics, vol. 8, no. 4, Fall 2007.

[36] da Rosa L. A. R., Regulla D. F. and Fill U. A.,” Precision for Low Dose Assessment Using TLD-100 Chips and Computerised Glow Curve Analysis”, Radiation Protection Dosimetry Vol. 85, Nos. 1–4, pp. 175–178,1999.

[37] Attix F.H., “ Introduction to Radiological Physics and Radiation Dosimetry”, WILEY-VCH, Germany, 2004.