International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
SCImago Journal & Country Rank

Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 8 - Issue 12, December 2019 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Big Data Education At The Chilean Academy: Is This Possible?

[Full Text]



Cristian Vidal-Silva, Erika Madariaga, Claudia Jiménez, Luis Urzúa



Big Data, Technology, Large Volumes of Information, Education, Competences, Chilean Academy.



Technology evolves, and the human being presents a growing need for the use and generation of large volumes of information and data (Big Data). Working with Big Data with traditional computer systems is not feasible: Including new knowledge and technology of Big Data for inclusion in professional computer and computer education is necessary. The main objective of this work is to answer whether or not the Chilean academy is prepared to train specialists in Big Data. In addition to describing theoretical and practical components of Big Data along with introducing an essential tool of the subject, this work defines and presents the results of a survey to explore and analyze the reality of the academy in Chile regarding the degree of viability to train and train professionals competent in Big Data. Necessary conditions for developing Big Data competences in the Chilean academy require more adjustments. Specifically, the Chilean academy needs to adopt Big Data topics and solutions for developing those competencies in future professionals.



[1] S. Baskarada, and A. Koronios, “Data, Information, Knowledge, Wisdom (DIKW): A Semiotic Theoretical and Empirical Exploration of the Hierarchy and its Quality Dimension”, Australasian Journal of Information Systems, vol. 18, no. 1, Nov 2013, doi: 10.3127/ajis.v18i1.748.
[2] D. Chaffey, and S. Wood, “Business Information Management: Improving Performance Using Information Systems”, Harlow, FT Prentice Hall, pp. 102-110, 2005.
[3] A. Liew, “Understanding Data, Information, Knowledge and their interrelationships”, Journal of Knowledge Management Practice, vol. 7, June 2007.
[4] T. Davenport, and L. Prusak, “Working Knowledge: How Organizations Manage What They Know”, Journal Ubiquity, ACM, USA, Aug 2000, doi: 10.1145/347634.348775.
[5] A. Liew, “DIKIW: Data, Information, Knowledge, Intelligence, Wisdom and their Interrelationships”, Journal Business Management Dynamics, vol. 10, no. 2, pp. 49-62, Apr 2013.
[6] T. White, “Hadoop: The Definitive Guide”, O’Reilly, 4th Ed., Sebastopol, CA, USA, 2015, ISBN: 1491901632.
[7] A. Gandomi, and M. Haider, “Beyond the hype”, International Journal of Information Management, vol. 35, no. 2, pp. 137–144, Apr 2015, doi: 10.1016/j.ijinfomgt.2014.10.007.
[8] J. J. Camargo, J. F. Camargo, and L. Joyanes, “Conociendo Big Data”, Revista Facultad de Ingeniería, vol. 24, no. 38, pp. 63-77, Colombia, Apr 2015.
[9] S. Valenzuela, C. Vidal, J. Morales, and L. López, “Ejemplos de Aplicabilidad de Giraph y Hadoop para el Procesamiento de Grandes Grafos”, Información Tecnológica, vol. 27, no. 5, pp. 171-180, Chile, Sept/Oct 2016, doi: 10.4067/S0718-07642016000500019.
[10] C. Vidal, M. Bustamante, M. Lappo, and M. Núñez, “En la Búsqueda de Soluciones MapReduce Modulares para el Trabajo con BigData: Hadoop Orientado a Aspectos”, Información Tecnológica, vol. 29, no. 2, pp. 133-140, Chile, Mar/Apr 2018, doi: 10.4067/S0718-07642018000200133.
[11] J. Dean, and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, in Proceedings of 6th Conference on Symposium on Operating Systems Design & Implementation OSDI 2004, San Francisco, CA, USA, pp. 137-150, 2004.
[12] R. Shaposhnik, C. Martella, and D. Logothetis, “Practical Graph Analytics with Apache Giraph”, Apress, USA, 2015, ISBN: 1484212525.f
[13] M. Guller, “Big Data Analytics with Spark”, Apress – Spring, New York, NY, USA, 2015, ISBN: 978-1-4842-0965-3.
[14] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Öscan, “Clash of the Titan: MapReduce vs. Spark for Large Scale Data Analytics”, in Procedings of Very Large Data Bases (VLDB), Sept 5th-09th, New Delhi, India, 2016, doi: 10.14778/2831360.2831365.
[15] J. Dean, and S. Ghemawat, “MapReduce: a Flexible Data Processing Tool”, Communications of the ACM, vol. 53, no. 1, pp. 72-77, 2010, doi: 10.1145/1629175.1629198.
[16] Apache, “Apacahe Hadoop”, Apache Hadoop, https://hadoop.apache.org/. 2019.
[17] J. Lin, and C. Dyer, “Data-Intensive Text Processing with MapReduce”, Morgan and Claypool Publishers, USA, 2010, ISBN: 1608453421.
[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to Algorithms”, 3rd Edition, The MIT Press, 2009.
[19] A. Hernández, and A. Hernández, “Acerca de la aplicación de MapReduce + Hadoop en el tratamiento de Big Data”, Revista Cubana de Ciencias Informáticas, vol. 9, no. 3, pp. 49-62, July/Sept 2015.
[20] EstudioBigData, “Estado Actual del Big Data en la Academia Chilena”, Universidad Bernardo O’Higgins. https://docs.google.com/forms/d/e/1FAIpQLSczj8C2XV0VrhrazICB2OSc2Cz7JlIebHzQZM-pV0yl29B0BQ/viewform. 2018.
[21] R. Likert, “A Technique for the Measurement of Attitudes”, Archives of Psychology, vol. 140, pp. 1-55, 1932.
[22] M. Huda, A. Maseleno, P. Atmotiyoso, M. Siregar, R. Ahmad, K. Azmi Jasmi, and N. Hisyam Nor Muhamad, “Big Data Emerging Technology: Insights into Innovative Environment for Online Learning Resources”, International Journal of Emerging Technologies in Learning (iJET), vol. 13, no. 01, Jan 2018, doi: 10.3991/ijet.v13i01.6990.
[23] C. Dede, “Next steps for ‘Big Data’ in Education: Utilizing data-intensive research”, Educational Technology Harvard, LVI, vol. 2, pp. 37 – 42, 2016.
[24] P. Williams, “Assessing collaborative learning: big data, analytics and university futures”, Assessment & Evaluation in Higher Education, July 2016, doi: 10.1080/02602938.2016.1216084.
[25] O. J. Dahl, B. Myhrhaug, and K. Nygaard, “Some features of the SIMULA 67 language”, Proceedings of the Second Conference on Applications of Simulations, 29 – 31 Dec 1968.