International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 9 - Issue 1, January 2020 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Influence Of Tannery Wastewater Irrigation On Growth And Enzymatic Activities Of Ipomoea Pes-Caprae Sweet And Clerodendron Inerme (L.) Gaertn.

[Full Text]



A. Venkatesan, G. Mathan



Catalase, Wastewater, Phytochelaton, Seedlings.



The present study deals with the exogenous addition of various concentrations of tannery wastewater on growth and enzymatic activity of Ipomoea pes-caprae and Clerodendron inerme was assessed. The morphological parameter such as shoot and root length, fresh and dry weight of both plants organ increased upto extreme level of 90% when compared to that of control on both the sampling day. The enzymatic studies such as peroxidase, catalase, polyphenoxidase, phytochelaton and glutathion increased with increasing tannery effluent at 90% on both the sampling day. The aim of this study to analyze these two halophytic plants accumulate more heavy metal stored in plant organ.



[1] Anderson, M.E. 1985. Determination of glutathione disulfide in biological samples. Methods Enzymol., 113: 548-555.
[2] Chitra, K. 2017. Effects of copper on germination and seedlings growth of radish (Raphanus sativus L.). J. Exp. Sci., 11(4): 01-02.
[3] Duarte, B., Silva, V. and Cacador, I. 2012. Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotoxicol. Environ. Safe, 82: 1-7.
[4] Estrella, - Gomez, N., Mendoza-Cozatl, D., Moreno-Sanchez, R., Gonzaleza-Mendoza, D., Zapata-Perez, O., Martinez-Hernandez, A. and Santamaria, J.M. 2009. The Pb-hyper accumulator aquatic fern Salvina minima Bater., responds to Pb2+ by increasing phytochelatin via changes in SmPCs expression and inphytochelatin synthase activity. Aquat. Toxicol., 91: 320-328.
[5] Gratao, L.P., Polle, A., Lea, P.J. and Azevedo, R.A. 2005. Making the life of heavy metal stressed plants a little easier. Funct. Plant Biol., 32: 481-494.
[6] Hameed, A., Hussain, T., Gulzar, S., Aziz, I., Gul, B. and Ajmal Khan. 2012. Salt tolerance of a cash crop halophyte Suaeda fruticosa: biochemical responses to salt and exogenous chemical treatment. Acta Physiol. Plant, 34: 2331-2340.
[7] Kumar, K.B. and P.A. Khan. 1982. Peroxidase in excised ragi (Eleusine coracana cv. PR 202) leaves during senescence. Indian J. Expt. Bot., 20: 412-416.
[8] Kupper, H., Kupper, F. and Spiller, M. 1996. Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J. Expt. Botany, 47: 259-266.
[9] Lokhande, V.H., K. Mulye, R. Patkar, T.P. Nikam and P. Suprasanna. 2012. Biochemical and physiological adaptation of the halophyte Sesuvium portulacastrum L. to salinity. Arch. Agron. Soil Sci., 59(10): 1373-1391.
[10] Machly, A.C. and Chance, B. 1967. The assay of catalase and peroxidase. In: Methods of biochemical analysis. Vol. I (Glick, D. Ed.). Inter Science Publishers, New York, pp. 357-425.
[11] Manousaki, E. and N. Kalograkis. 2011b. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res.,50(2): 656-660.
[12] Mishra, S., Srivastava, S., Tripathi, R.D., Kumar, R., Seth, C.S. and Gupta, D.K. 2006. Leads detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 65: 1027-1039.
[13] Morlos, M.A., Michalek, P., Krystofova, O., Zitka, O., Adama, V. and Kizek, R. 2014. The role of phytochelatin in plant and animals. A review. J. Metalomics Nanotechnol., 4: 22-27.
[14] Parida, A.K., Das, A.B., Sanada, Y. and Mohanty, P. 2004b. Effect of salinity on biochemical components of mangrove Aegiceras corniculatum. Aquat. Botany, 80: 77-87.
[15] Radwan, M.A., El-Gendy, K.S. and Gad, A.F. 2010. Biomarkers of oxidative stress in the land snail Theba pisana for assessing ecotoxicological effects of urban metal pollution. Chemospere,79: 40-46.
[16] Rastogoo, L. and A. Alemzadeh. 2011. Biological responses on gouan (Aleropus littoralis) to heavy metal stress. Aus. J. Crop Sci., 5(4): 375-383.
[17] Rausch, T., Gromes, R., Liedschulte, V., Muller, I., Bogs, J., Galvoic, V. and Wachter, A. 2007. Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biolog., 9: 565-472.
[18] Shao, H.B., Z.S. Liang, M.A. Shao, Q. Sun and Z.M. Hu. 2005. Investigationon dynamic genotypes during two vegetative – growth stages at water deficits. Biointerfaces, 43: 221-227.
[19] Sharma, A., I. Gontia, K. Pradeep, V. Agarwal and B. Jha. 2010. Accumulation of heavy metals and its biochemical responses in Salicornia brachiata an extreme halophyte. Mar. Biol. Res., 6: 511-518.
[20] Sharma, V. and Ramawat, K.G. 2014. Salt stress enhanced antioxidant response in callus of three halophytes (Salsola baryosona, Trianthema triquetra, Zygophyllum simplex) of Thar Desert. Biologia, 69(2): 178-185.
[21] Slama, I., T. Ghanaya, A. Savoure and C. Abdelly. 2008. Combined effect of long-term salinity and soil drying in growth, water relation, nutrient status and proline accumulation of Sesuvium portulacastrum. C.R. Biologies, 331: 402-451.
[22] Venkatesan, A. 2019. Phytoremediation of tannery effluent on biochemical constituents of Ipomoea pes-caprae Sweet and Clerodendron inermae Gaertn. A. J. Comp. Theory, 12(9): 588-598.
[23] Venkatesan, A. and Sridevi, S. 2009. Response of antioxidant metabolism to NaCl stress in the halophyte Salicornia brachiata Roxb. J. Phytology, 1(4): 242-248.