Identification Of Moringa Oleifera Leaves Content Fermented By Rhizopus Oligosporus

Asriati Djonu, Sri Andayani, Happy Nursyam

Abstract: The fermentation process aims to improving the content of Moringa oleifera leaves by utilizing Rhizopus oligosporus 10^6 CFU/ml. We used four different treatments in the form of fermentation time consisting of 0, 3, 6 and 9 days. The best fermentation treatments obtained from test result include physical fermentation score test, phytochemical test, Fourier Transform Infra Red Spectrophotometer, total phenol content, protein content and crude fiber. Results showed the best treatment with fermentation time on day 6 with total phenol content of 4.73%, protein content of 29.69% and crude fiber of 10.37%.

Keywords: Crude Fiber, Fermentation, Moringa oleifera, Rhizopus oligosporus, Total Phenol.

1. Introduction
Moringa (Moringa oleifera) is a plant from India and widely spread in Indonesia. Almost every part of moringa plants can be consumed and potentially as medicine [1]. One part that can be used is moringa leaves. Moringa leaves in dry form and powder have protein content of 27.1-28.44% and crude fiber of 12.63-19.2% [2]. The content of crude fiber is quite high so that it can affect and reduce the digestibility; therefore it is necessary to do an effort to improve the quality of moringa leaves, both primary and secondary metabolite quality. The improvement of the quality of moringa leaves can be done by fermentation method. Fermentation is a process that utilizes the ability of microbes to produce primary and secondary metabolites in a controlled environment. Rhizopus oligosporus is one type of mold that can be used in the fermentation process. Utilization of R. oligosporus in the fermentation process can increase protein levels by protease enzyme activity and also can decrease crude fiber at KOHAY concentrate and bran [3]. Then R. oligosporus can also increase the total phenolic content of bran fermentation [4]. The fermentation process with R. oligosporus produces enzymes such as β-glucosidase, cellulase and xylanase that play an important role in biotransformation processes such as modifying primary and secondary metabolites that can enhance active compounds such as polyphenols [1]. Therefore, the aim of this research is to improve the quality of moringa leaf using fermentation.

2. Materials and Method
The research was conducted in April - September 2017 at the Faculty of Fisheries and Marine Sciences, Brawijaya University, East Java, Indonesia.

Fermentation Moringa oleifera leaves
The material used in fermentation is simplicia moringa (M. oleifera) leaves with fermentor agent is Rhizopus oligosporus 10^6 CFU/ml. Ratio of fermentation materials was 10: 5: 1: 1 (M. oleifera: aquades: R. oligosporus: molasses). Fermentation was carried out for 9 days with observation time on days 0, 3, 6 and 9.

Parameter Analysis
Moringa leaves fermentation parameters include physical fermentation score test. Analysis was done by observing the physical characteristics of each fermentation result which includes texture, aroma, the amount of water vapor and the amount of hyphae fermented product. Scoring was done with a range scoring of 1-4. Total phenol content, protein content, crude fiber, phytochemical test, Fourier Transform Infra Red Spectrophotometer.

Data Analysis
Data analysis was performed by analysis of variance ANOVA (SPSS version 16).

3. Result and Discussion
• Physical Scoring Fermentation M. oleifera Leaves

<table>
<thead>
<tr>
<th>Day</th>
<th>Texture</th>
<th>Aroma</th>
<th>Amount of Water Vapor</th>
<th>Amount of Hyphae</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Based on the results of physical scoring fermentation, moringa leaves obtained best treatment on the fermentation day 6. The texture of fermentation produced lumps, the aroma produced is fragrant, there is little water vapor and many hyphae. Higher the scoring, the better it results fermented products.

Asriati Djonu is a student at Faculty of Fisheries and Marine Science, University of Brawijaya, East Java Malang, Indonesia.

Sri Andayani and Happy Nursyam as a lecturer at Faculty of Fisheries and Marine Science, University of Brawijaya.

Corresponding Author: Faculty of Fisheries and Marine Science, University of Brawijaya, Indonesia. Email: adjonu@yahoo.com
• **Total Phenol Content**

Total phenol content of moringa leaves fermentation treatment showed an increase compared to the control treatment. The highest treatment was on day 6 (4.73%) and the lowest was in the control treatment (2.04%). The longer the fermentation processes the total phenol content increases. Increased total phenols content of moringa leaves is due to the activity of enzyme at *R. oligosporus* that capable of forming a phenol compound. Results of previous studies have shown an increase in total phenol by β-glucosidase activity, which plays a key role in breaking the glycoside bond to release the total bound phenol found in guava leaves during the fermentation process [1]. β-glucosidase is key in the biocconversion process to improve the quality of a product during the fermentation process [7,8,9].

Figure 1. Results of Total Phenol Content

![Total Phenol Content](image1)

(Difference letters shows significant difference in level of confidence 95%)

• **Protein Content**

Protein content in this study tended to increase. The highest protein content was found in the 6th day of fermentation treatment at 29.69% and the lowest was in the control treatment with the level of 28.26%. Increased protein levels caused by protease enzyme activity produced by *R. oligosporus*. Protease enzyme can break down carbohydrates, especially C atoms on substrate into various group functional bundles that can disfigure a protein [10]. Increased protein may be caused by mold mycelium on substrate; this is because mold itself contains nucleic acids that can contribute to nitrogen that is the sole source of a single cell protein. More mold grows, the higher protein content, because some of the mold is protein [11].

Figure 2. Results of Protein Content

![Protein Content](image2)

(Difference letters shows significant difference in level of confidence 95%)

• **Crude Fiber**

Results of analysis of crude fiber showed highest value found in treatment of 9th day fermentation with content of 14.47% and the lowest crude fiber value found in the 6th day fermentation treatment with content of 10.37%. The decrease in crude fiber during the fermentation process is due to enzyme in *R. oligosporus* which breaks the cell wall of cellulose of *M. oleifera* leaves. This is because *R. oligosporus* is capable of producing cellulase enzymes capable of degrading crude fiber during fermentation process making it easier to digest [12]. The decrease in crude fiber in fermentation results due to enzyme produced by *R. oligosporus* capable of breaking cellulose into glucose. Cellulase enzyme is a complex enzyme that works gradually in breaking cellulose into glucose, and then glucose generated from the substrate will be used as a source of carbon and energy [13].

Figure 3. Results of Crude Fiber

![Crude Fiber](image3)

(Difference letters shows significant difference in level of confidence 95%)

• **Phytochemical Moringa oleifera Leaves**

Table 2. Phytochemical Moringa oleifera Leaves

<table>
<thead>
<tr>
<th>Parameter Analysis</th>
<th>Analysis Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoid</td>
<td>+</td>
</tr>
<tr>
<td>Saponin</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloid (P. Mayer)</td>
<td>-</td>
</tr>
<tr>
<td>Alkaloid (P. Dragendrof)</td>
<td>-</td>
</tr>
</tbody>
</table>

Results of phytochemical moringa leaves showed the
presence of active compounds such as phenols, flavonoids and saponins. The result of phytochemical studies of moringa leaves also contain secondary metabolite compounds such as flavonoids, alkaloids, phenols that play a role in inhibiting bacterial activity [5]. Phytochemical content of moringa leaves extracted with water includes gallicitannin steroids, triterpenoids, flavonoids, saponins, antraquinones, catecol tannins, alkaloid and reducing sugar [6].

- Fourier Transform Infra Red Spectrophotometer

![Figure 4. Results of FTIR Fermented M. oleifera leaves day 6](image)

Based on Fourier Transform Infra Red Spectrophotometer (FTIR), the fermented M. oleifera leaves showing 5 regions of frequency indicating the type of bond in a compound with the following details.

<table>
<thead>
<tr>
<th>Area Frequency (cm⁻¹)</th>
<th>Functional Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>3520,038</td>
<td>Alcohol/phenol (H-bonded)</td>
</tr>
<tr>
<td>1636,756</td>
<td>Primary amine</td>
</tr>
<tr>
<td>1385,231</td>
<td>Secondary amine</td>
</tr>
<tr>
<td>1067,558</td>
<td>Alcohol/phenol (H-bonded)</td>
</tr>
<tr>
<td>669,403</td>
<td>Carboxylic acid</td>
</tr>
<tr>
<td>800,607</td>
<td>Alcohol, Ether</td>
</tr>
<tr>
<td>669,403</td>
<td>Esters, Amide</td>
</tr>
</tbody>
</table>

4. Conclusion
Fermentation of M. oleifera leaves using R. oligosporus resulted the best treatment was on the day 6 (for physical score, total phenol, protein content, and crude fiber).

References

