
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 04, APRIL 2020 ISSN 2277-8616

3510

IJSTR©2020

www.ijstr.org

A Comparative Analysis On Software Testing
Tools And Strategies

Pramod Mathew Jacob, Priyadarsini S, Renju Rachel Varghese, Sumisha Samuel, Prasanna Mani

Abstract: Current software industry‘s prime focus is on developing quality application programs. The basic business management principle ‗Customer
acceptability is directly proportional to the quality of the product‘ is admissible for software products too. Thus, testing phase has a vital role in improving
customer satisfaction of a software application. The various research analytics claim that nearly 30% effort of entire software development is used for
performing testing activities. Every software firm or application developers follow a typical custom set of testing strategies and uses some standard
testing tools for quality assurance. The project manager has to decide the testing strategy between manual and automated testing. In automated testing,
there are many tools available with different capabilities and performance characteristics. This review analyzes the performance metrics of various
testing tools and testing strategies used for enriching the quality of the application being developed. The review result may guide the project manager to
make the trade-off decisions for choosing the appropriate testing tools and testing strategies applicable for their project domain.

Index Terms: Software testing, Test script, Test cases, Automated testing tool, Manual testing, System testing.

—————————— ——————————

1 INTRODUCTION
Software testing Software testing [1, 2] is a quality control
activity which involves defect detection and correction. Testing
can be performed at various stages of software development
process depending upon the methodology and tools being
used and usually begins after the requirement confirmation
phase. The initial phase is at unit level where it mainly focuses
on coding. After coding all software units, we perform
Integration testing for finding out the bugs in the software
application. The ultimate purpose of software testing is to
prevent software from failure, ensuring the quality and
satisfying the stakeholders. Software testing can also be
mentioned as the process of performing verification and
validation to a software or an application that meets the
business oriented and technical-oriented functional
requirements that guided in its design phase and
development. Validating and Verifying (V&V) [3] is the process
of ensuring that a software meets the requirements mentioned
in Software Requirement Specification (SRS) document and
that it fulfils its intended functionality. It can be considered as a
methodology to ensure software quality. The terms can be
defined as follows:

Verification: It is the process of ensuring whether the software
product is built in the right manner.

Validation: It is the process of ensuring whether the
developed software product is as expected. Testing usually
consist of three levels called Unit testing, Integration testing
and System testing each of them has many sub levels of
testing strategies. These testing can be performed either using
human resources or using automation tools.

There is a wide set of testing automation tools available. Our
work evaluates the performance and characteristics of most
widely used test automation tools. This review work also
focuses on analyzing the efficiency and applicability of various
testing strategies that can be followed in a software industry.

2 RELATED WORKS
K. M. Mustafa et al has classified the software testing tools
based on software testing methods [4]. They have evaluated
nearly 135 testing tools and categorized them over three types
of software products (web application, application software,
network protocol). Their analysis also points out which testing
method has limited automation tools. T. E. J. Vos, et al has
proposed a framework for evaluating software testing tools
and techniques [5] which is successfully used for some case
studies in EvoTest and FITTEST. But this framework fails to
evaluate the performance constraints of automated tools like
test script generation time, test script evaluation time and
much more. James B. Michael et al derived object-oriented
metrics for measuring the effectiveness of the software testing
tools and is validated using three testbeds [6]. The proposed
computational metrics can be used in evaluating the
effectiveness, quality, accuracy, performance and much more
for a tool. Insha Altaf, J. A. Dar et al has performed a survey
on Selenium tool in software testing [7]. They have discussed
about the basic features and functionalities of the Selenium
testing tool along with mentioning some of its application
domains. R. Angmo et al has evaluated the performance of
web-based automation testing tools [8]. They have analyzed
web testing tools: Selenium and Watir. Their evaluation results
claim that Selenium web driver is much better than Watir web
driver, if suitable Selenium browser plugins are added. In most
of the related works, the authors mainly focusing on a
particular framework or testing aspects. Most of the tools used
are outdated now. So, our review focuses on the most widely
used testing tools like Selenium and HPE UFT against some
basic standard performance metrics.

3 TERMINOLOGY
In order to analyze various testing techniques, it is better to
recollect the basic terminologies used in software testing:

Test case: A test case is a set of test data that is to be
inputted, along with expected results and resultant conditions,

• Pramod Mathew Jacob is currently working as Assistant Professor
in Providence College of Engineering Chengannur, Kerala, India, E-
mail: pramod3mj@gmail.com

• Priyadarsini S is currently working as Assistant Professor in
Providence College of Engineering Chengannur, Kerala, India.

• Renju Rachel Varghese is currently working as Assistant Professor
in Providence College of Engineering Chengannur, Kerala, India.

• Sumisha Samuel is currently working as Assistant Professor in
Providence College of Engineering Chengannur, Kerala, India.

• Dr. Prasanna Mani is currently working as Associate Professor in
Vellore Institute of Technology, Vellore, Tamil Nadu, India.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 04, APRIL 2020 ISSN 2277-8616

3511

IJSTR©2020

www.ijstr.org

designed for a particular testing module in order to ensure
system functionalities [9, 10]. Consider the example test cases
for the ATM Personal Identification Number (PIN) field
validation in a web page. Assume that the PIN should be a
four-digit integer number. Then the test case should be as
follows:

Valid test case: PIN = 1234 // 4 –digit integer
Invalid Test cases:
PIN = 123 // non 4 –digit integer
PIN = abcd // not an integer
PIN = 12a4 // combination of character and integer
PIN = Blank // No Input data

In this case test cases can be defined using the Equivalence
class partitioning method [11]. There is one valid and two
invalid classes.
Valid class: (1000 ≤ PIN ≤ 9999) // 4-digit numbers.
Invalid classes are: (PIN < 1000) and (PIN > 9999)

Test suite: It is mathematically a set which consist of all the
test cases as set elements. A software can have infinite
number of test cases. A good test suite should have minimal
test cases which covers most errors. Test suite to validate the
ATM PIN field is:
{2000, 999, 10000, 12a4, abcd}

Error: Error is the degree of mismatch from actual result and
expected result. It represents mistake made by code
developers [12]. Though error and bug sounds synonyms, they
are not exactly the same. Error is the mistake found by tester.
When developer accepts this mistake, then it is called as a
bug.

Fault: Fault is an incorrect code statement, function or data
interpretation in a computer program which makes the
program or software system to generate an unexpected result.
Fault leads to error.

Bug: Bug is a fault in the code block which generates an
unintended result. It is normally the mistake accepted by the
developer.

Failure: It is the inability of a software system to perform its
expected functional and non-functional requirements.
Execution of a fault leads to failure.

Defect: A defect is a mistake committed by programmer in
coding or logic that causes a program to generate incorrect or
deviated results. Normally a defect is detected when a failure
occurs.

Test script: It can be defined as a collection of instructions
applied on the system under testing, to ensure that the system
performs its specified functionalities and behaves as expected.

4 SOFTWARE TESTING STRATEGIES
Software industry usually follows two testing approaches:
Manual testing and Automated testing. In manual testing,
testers evaluate the software manually for the faults. Here the
tester plays the role of an end user and evaluates all the
possible features and functionalities of the developed software
to ensure its behaviour and quality. The tester manually

prepares test plan and suitable test cases which is tested over
the application to verify the behaviour of Graphical User
Interface (GUI), functional and non – functional requirements
as illustrated in Figure 1. But performing manual testing
requires a large amount of human intervention and the
presence of an experienced - skilled person to design an
appropriate test suite.

Figure 1: Process involved in manual testing

In automated testing, execution of test cases is supported by
automation tools. Automated testing is quite beneficial in case
of large projects. Here automation tools perform tests that
repeat predefined actions, matches the developed program‘s
probable and real results [18].

Figure 2: Processes involved in automated testing

Test scripts are used by automated tools to perform software
testing. The automated tool traverses through the entire code
blocks for bugs, verify each system behavior by executing test
cases. If the expected behavior matches with the test results,
the automation tool confirms the quality of the product. The
Figure 2 shows the process involved in automation testing. It
is not practically feasible to automate all test cases which
involves some constraints regarding aesthetics and
appearance. There are pros and cons for both testing
strategies. Choosing which one to use among the two
depends upon factors like size of the project, time, availability
of resources and much more. The performance analytics [19,
20] of automated and manual testing are plotted in Figure 3.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 04, APRIL 2020 ISSN 2277-8616

3512

IJSTR©2020

www.ijstr.org

Figure 3: Performance analytics of automated versus
manual testing

If the project consists of too many test modules, then it is
better to prefer automated testing [27,28,29] than manual
testing. Because it is not feasible to derive all the
combinations of test cases for a project with too many coupled
modules. If a project got more time available for testing, then
do it manually, where the possibility of finding real time errors
is comparatively high than that of automated testing tools. The
prime constraint in performing manual testing is the need of
experienced testers. The manual testing [30] efficiency
depends on qualitative factors like experience and knowledge
level[31,32] of tester, nature of the software module under test,
category of the software etc. The analytical comparison of both
testing strategies is shown in Table 1. From the plotted graph,
it is clear that automated testing performs far better than that
of manual testing in most evaluation parameters. It is
recommended to use automated software testing tools in
certain testing scenarios. As the software industry[33] is too
competitive, there is a wide room for software quality and
reliability[34] in the scenario. Deadlines and product release
dates are more essential in this competitive market. In this
scenario an intelligent software company will choose some
good testing tools which may increase the efficiency of testing
as well as to get the product deadlines met.

TABLE 1. AUTOMATED TESTING VS MANUAL TESTING
Criteria Automated testing Manual testing

Speed of testing Faster Slower

Cost effectiveness
More cost
effective

Slightly less

Flexibility Not flexible Too flexible

Reusability Easily reusable
Not practically
feasible

Infrastructure
required

Comparatively
high

Less

Need of Training
Highly
recommended

Not required

Usage of Tools Too high Slightly less

Turn-around time High Less

Reliability
Comparatively
more

Less reliable

Need of
programming

Highly needed Not needed

Quality of testing High Low

Need of human
resources

Very few Huge

Mode of Concurrently in Sequentially

performing tests different systems

Testing GUI &
Aesthetics

Not possible Can be performed

Performing
Regression tests

Can be easily
performed

Very difficult and
boring task

Execution of Build
Verification Test
(BVT)

Easier to perform
Too difficult to
execute BVT

Applicable projects
Complicated and
large projects

Small projects
with limited
functionalities

5 SOFTWARE TESTING TOOLS

PERFORMANCE EVALUATION
There are lots of software testing tools available in the market.
The most successful ones include Selenium, HPE Unified
Functional Testing (UFT), IBM Rational functional tester, Silk
Test, LoadRunner, WinRunner and Test complete. The various
software testing tools can be classified based on their
functional features and their role in testing process as shown
in Table 3. There is still research undergoing in developing
testing tools to address other aspects of testing and validation.
During the STLC automation phase, the project manager
should choose an automation tool which is applicable to the
project being tested. The choice depends upon factors like tool
functionalities and features, testing team, budget of the project
being tested, performance aspects of the tools and much
more. There are testing tools which is customized for a
particular programming language like JUnit for Java
application and PyUnit for Python. Some tools like web
application tool, desktop application tool and mobile
application tool are domain specific. Our comparative analysis
mainly evaluates two widely accepted software testing tools:
Selenium and HPE Unified Functional Testing (UFT). HPE
Unified Functional Testing (UFT) [21] which was earlier known
as HP Quick Test Professional (QTP) provides features for
test automation and functional testing for various software and
environments. It is widely used for enterprise quality
assurance. It provides a GUI and features for keyword and
scripting interfaces. It uses VBScript to write the test scripts.
HP UFT is a single console for verifying the interface,
database and service layers of a software or application.
Selenium [22] is an open source, portable testing framework
mainly focusing on web applications. Selenium has a record-
playback tool for authorizing tests without learning to develop
test scripts. The prime components of Selenium framework
include Selenium IDE, Selenese, Selenium Remote control,
Selenium Client API, Selenium web driver and Selenium Grid.
For our evaluation we selected Windows (Ver. 10) as
operating system platform. We have installed the Selenium
IDE [23] and web driver add-ons in Mozilla Firefox browser.
HPE UFT [24] desktop application is installed with required
updates. We evaluated the performance of two testing tools by
testing the login pages of our VIT University [25], Rediffmail,
Facebook and Gmail. These login pages read username,
password and a CAPTCHA from user and redirects them to
homepage after successful validation. The test cases matrix
used for validating a login page is shown in Table 4.

TABLE 2. TEST CASE MATRIX FOR LOGIN PAGE VALIDATION

Test
case
ID

Username Password CAPTC-HA
Expected
outcome
message

1 Valid Valid Valid Login success

2 Invalid Valid Valid Incorrect Emp.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 04, APRIL 2020 ISSN 2277-8616

3513

IJSTR©2020

www.ijstr.org

Code

3 Valid Invalid Valid
Incorrect
password

4 Valid Valid Invalid
Incorrect
Captcha

We have evaluated the tools using the following performance
metrics [26].

1. Mean Script Creation Time (MSCT): It can be defined
as the mean time to create test scripts. It is the average
time taken to generate one test script.

2. Mean Script Execution Time (MSET): It can be defined
as the mean time to execute test scripts. It is the
average time taken to execute a single test script.

3. Tool Learning Time (TLT): It is the average time
required for a single naïve user to learn the software
tool to use. Of course, learning level is unquantifiable. It
can be redefined as the average time taken for training
naïve personnel to familiar with the software tool.

4. CPU Utilization rate: Percentage of CPU capacity being
used for running the software tool. 5. Tool Reliability
(TR): It is the probability of failure-free operation of the
testing tool for a specific time period in a particular
environment. Its value usually ranges between 0 and 1.

We evaluated the test cases in Table 2 using the Record-Play
back feature of Selenium. The test script generated by
Selenium is shown in Figure. 5.

Figure 4: Test data output

After saving the suitable test cases, we monitored the time for
creating each scripts. We have summed up all these to
estimate the Mean Script Creation Time (MSCT). It is found
that the MSCT depends on the number of actions or activities
performed during the recording time. Script creation time is
directly proportional to the count of activities performed during
recording. The phase test execution takes place afterwards,
where we loaded the test suite script. We have noted the initial
time and final time for test execution to estimate the Mean
Script Execution Time (MSET). Then we repeated the same
test suite and testing procedures to evaluate HPE UFT. But in
HPE UFT it is not possible to directly write the script to verify
the CAPTCHAs [27] without having access to the CAPTCHA
database which contain all CAPTCHAS values present in the

system. If we are permitted to access CAPTCHA database,
then it is possible to store the values for respective images in
an array and check the image. If image match, use that value.
This is not a perfect solution though, access to CAPTCHA
database is not granted always. So, in our evaluation we
validated only the username and password fields.

6 RESULTS
We have analyzed the above-mentioned performance
parameters of Selenium and HPE UFT tool. The results that
we obtained is plotted below in Figure 5.

Figure 5: Performance evaluation of Selenium & HPE UFT

The results that we mentioned is an approximate average
value, though these performance parameters depends upon
various qualitative parameters like tester‘s knowledge level
and experience, software and hardware support, level of
testing, complexity of the project being tested, language used
for scripting and much more. But our results can be used as a
reference model for software testers to choose the testing tool
which is appropriate for their domain. Though Selenium uses
Record and playback feature, Test script generation time can
be consumed. We have noted the time for generating scripts
for multiple test cases and then estimated the average number
of scripts that can be generated in an hour. Mean script
execution time is also estimated in the same manner by noting
the time taken to execute each test cases. MSET also
depends upon the complexity of the test module. For
estimating tool learning time, we choose around 10 students
with basic programming knowledge. We trained them till they
are able to generate and execute test scripts. The mean time
taken for each individual is measured to approximate up the
TLT value. TLT is not purely quantitative though it depends
upon the skill of the persons being trained. CPU utilization is
an average over a period of time. At any point in time, if the
CPU is either busy (100 percent) or idle (0 percent). Though
HPE UFT is a desktop application, it consumes much CPU
power than Selenium which runs in a web browser. The
comparative analysis of both functional and performance
aspects of Selenium and HPE UFT are summarized in Table 3.

7 CONCLUSIONS
Software testing plays a vital role in software quality
management. Manual testing and automated testing are the
main strategies followed. Automation testing is always
preferred by a software industry to improve productivity and

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 04, APRIL 2020 ISSN 2277-8616

3514

IJSTR©2020

www.ijstr.org

efficiency. Though manual testing is time consuming and
costly than automated testing, it will figure out some errors
which can‘t be found through test automation. Test automation
tools are widely used in software industry to increase the
productivity. But there is no tool which is perfectly automates
software testing. There are many software tools useful for
various programming domains and software applications. But
Selenium and HPE UFT are widely used tools where the
former is open-source and later is licensed. HPE UFT can be
used for both webpage and desktop applications whereas
Selenium restricted only for web applications. Though
Selenium is freeware, we cannot chose it always, because of
the need of an experienced test professional. HPE UFT is
comparatively easier to use and develops test scripts in less
time. Root cause analysis and recovery strategies are much
better in HPE UFT than that of Selenium. Thus our evaluation
results may guide a project manager to choose the best tool
applicable for their project domain.

8 ACKNOWLEDGMENT
We acknowledge Providence College of Engineering,
Chengannur for providing all the support for implementing this
work.

REFERENCES

[1]. B. Beizer, ―Software Testing Techniques‖. London:
International Thompson Computer Press, 1990.

[2]. Glenford J. Myers, ―The Art of Software testing‖,
Second Edition, Wiley India Edition.

[3]. B. Beizer, ―Black Box Testing‖, New York: John Wiley
& Sons, Inc., 1995.

[4]. K. M. Mustafa, R. E. Al-Qutaish and M. I. Muhairat,
"Classification of Software Testing Tools Based on the
Software Testing Methods," Computer and Electrical
Engineering, 2009. ICCEE '09. Second International
Conference on, Dubai, 2009, pp. 229-233. doi:
10.1109/ICCEE.2009.9

[5]. T. E. J. Vos, B. Marín, M. J. Escalona and A.
Marchetto, "A Methodological Framework for
Evaluating Software Testing Techniques and Tools,"
2012 12th International Conference on Quality
Software, Xi'an, Shaanxi, 2012, pp. 230-239. doi:
10.1109/QSIC.2012.16

[6]. J. B. Michael, B. J. Bossuyt and B. B. Snyder,
"Metrics for measuring the effectiveness of software-
testing tools," Software Reliability Engineering, 2002.
ISSRE 2003. Proceedings. 13th International
Symposium on, 2002, pp. 117-128. doi:
10.1109/ISSRE.2002.1173225

[7]. Altaf, J. A. Dar, F. u. Rashid and M. Rafiq, "Survey on
selenium tool in software testing," Green Computing
and Internet of Things (ICGCIoT), 2015 International
Conference on, Noida, 2015, pp. 1378-1383. doi:
10.1109/ICGCIoT.2015.7380682

[8]. R. Angmo and M. Sharma, "Performance evaluation
of web based automation testing tools," Confluence
The Next Generation Information Technology Summit
(Confluence), 2014 5th International Conference -,
Noida, 2014, pp. 731-735. doi:
10.1109/CONFLUENCE.2014.6949287

[9]. Van Vleck, T., ―Three Questions About Each Bug You
Find‖, ACM Software Engineering Notes, vol. 14, no.
5, July 1989.

[10]. SriivasanDesikan, Gopalaswamy Ramesh, ―Software
Testing: Principles and Practices‖, Pearson.

[11]. Pramod Mathew Jacob and M. Prasanna, ―A
Comparative analysis on black box testing strategies,‖
International Conference on Information Science –
ICIS –‘16, Kochi, India, 2016

[12]. Rajib Mall, ―Fundamentals of Software
Engineering‖,Third edition, PHI

[13]. http://www.tutorialspoint.com/software_testing/softwar
e_testing_quick_guide.htm

[14]. Ian Sommeriele, ―Software Engineering‖, Addison
Wesley.

[15]. Pressman, ―Software Engineering –A Practitioner‘s
Approach‖.

[16]. http://www.softwaretestingclass.com/software-testing-
life-cycle-stlc/

[17]. http://istqbexamcertification.com/what-is-software-
testing-life-cycle-stlc/

[18]. http://www.softwaretestingclass.com/automation-
testing-vs-manual-testing/

[19]. https://www.infosys.com/it-services/validation-
solutions/white papers/documents/choosing-right-
automation-tool.pdf

[20]. http://www.softwaretestinghelp.com/software-test-
metrics-and measurements/

[21]. https://en.wikipedia.org/wiki/HP_QuickTest_Professio
nal

[22]. https://en.wikipedia.org/wiki/Selenium_(software)
[23]. http://www.seleniumhq.org/download/
[24]. https://saas.hpe.com/en-us/download/uft
[25]. https://peopleorbit.vit.ac.in/hr_login.asp
[26]. Harpeet Kaur, Gagan gupta, ―Comparative study of

automated testing tools: Selenium, QTP and Test
Complete‖ Journal of Engineering Research and
Applications www.ijera.com ISSN : 2248-9622, Vol. 3,
Issue 5, Sep-Oct 2013, pp.1739-1743

[27]. P. M. Jacob and P. Mani, ―A Reference Model for
Testing Internet of Things based Applications‖, Journal
of Engineering, Science and Technology (JESTEC),
Vol. 13, No. 8 (2018) ,pp. 2504-2519.

[28]. 23. P. M. Jacob and P. Mani, "Software architecture
pattern selection model for Internet of Things based
systems," in IET Software, vol. 12, no. 5, pp. 390-396,
10 2018. doi: 10.1049/iet-sen.2017.0206.

[29]. 24. Pramod Mathew Jacob and M. Prasanna, ―A
Comparative analysis on black box testing strategies,‖
International Conference on Information Science –
ICIS –‘16, Kochi, India, 2016

[30]. 25. V. Bose, R. Roy, M. Nadirsha, B. Raj, Ajesh M and
P. M. Jacob, "Gesture based painting system," 2016
International Conference on Information Science
(ICIS), Kochi, 2016, pp. 23-27.

[31]. 26. P. M. Jacob, Muhammed Ilyas H, J. Jose and J.
Jose, "An Analytical approach on DFD to UML model
transformation techniques," 2016 International
Conference on Information Science (ICIS), Kochi,
2016, pp. 12-17.

[32]. 27. Pramod Mathew Jacob and Prasanna Mani, ―A
Performance Estimation Model for Software Testing
tools‖, ,‖ International Journal of Engineering and
Advanced Technology (IJEAT), vol. 8. no. 4, pp. 248-
253, 2019

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 04, APRIL 2020 ISSN 2277-8616

3515

IJSTR©2020

www.ijstr.org

[33]. Jisha Mariyam John and Hariharan R.L, ―An
Intelligent Rider Assistant System using Machine
Learning for two wheel vehicles,‖ International Journal
of Engineering and Advanced Technology (IJEAT),
vol. 8, no. 6, pp. 1361-1366, 2019.

[34]. Priyadarsini S, Junie Mariam Varghese, Aparna
Mahesh and Talit Sara George, ―Shopping Spree: A
Location based Shopping Application‖, International
Journal of Engineering and Advanced Technology
(IJEAT), vol. 8, no. 6, pp. 1451-1455, 2019.

