
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020       ISSN 2277-8616 

452 
IJSTR©2020 

www.ijstr.org 

Data Race Detection Techniques In Java: A 
Comparative Study 

 

Devesh Lowe, Dr. Mithilesh Kumar Dubey, Bhavna Galhotra 
 
Abstract: Most modern programming languages support multi-threading, which is commonly required in executing parallel programs in mobile multi-
media applications, web-servers and operating systems. Concurrency bugs are common in multi-threaded applications. Bugs like race conditions, data 
races and deadlocks are some problems which arise out of unsynchronized code but have to capacity to sneak in to large and complex structures and 
may result in giving unexpected results. Data Race is one such synchronization bug, arising out of unsynchronized code, which can stay hidden even 
after many rounds of testing, but can emerge as a system destroyer when it surfaces. Researchers, in last four decades have presented various tools to 
detect data races which are broadly classified into static, dynamic and hybrid categories. In this paper authors have focussed on data races arising in 
object oriented programming language- java and have presented a study of various research articles subjected towards early detection of data races. 
Authors hereby present a study of techniques used by different researchers and have tried to summarise the java oriented approaches to solve the 
problem. Authors also present a comparison on different java based tools used for data race detection. 
 
Index Terms:Parallel Processing, Concurrency Bug, Race Condition, Dynamic Data Race Detection, Java 

———————————————————— 

 

1. INTRODUCTION 
Multi-threaded programs are the main stay of modern 
programming. Most modern programming languages 
support multithreaded applications, which definitely 
improves the responsiveness of programs. Use of multi-
threaded applications give rise to concurrency bugs like 
race conditions, data races and deadlocks. Data race is one 
of the most common concurrency bug that is affecting 
multithreaded programming since its inception. A data race 
arises when two or more threads try to access a shared 
resource and one of them is in write mode [1] i.e. trying to 
change or update the shared resource. Data race is 
notoriously difficult to 

detect as ordering of thread execution is decided by 
operating system where program or programmer don’t get 
any access. A data race if not handled properly has the 
potential to even crash a system. All parallel programming 
languages provide mechanisms which help to prevent data 
races. It is important that a data race caused by an 
imperfect code must be detected early to prevent them from 
causing much harm to the system.  
In many situations, data races and race conditions are often 
mistaken for each other. There is a peculiar causal and non-
causal relationship between Race Conditions and Data 
Races. Many race conditions are caused by data races and 
similarly many data races are caused by race conditions. 
There are also situations where data races are independent 
of race conditions and vice-versa. Race Condition occurs 
when timing or ordering of events gets affects by other 
undesirable or uncontrollable events resulting in hampered 
programs correctness. For example situations created by 
context switch, OS signals, hardware interrupts and 
memory operations on multi-processors can produce race 
conditions. Data race is more of a programming error of 
synchronization. As explained by Sebastian Burckhardt at 
Microsoft Research, Data Race happens when there are 
two memory accesses in a program where both: [2] 

 Target the same location 

 Are performed concurrently by two threads 

 Are not reads 

 Are not synchronization operations 
Various data race detection techniques have been 
developed in last four decades which have been 
instrumental in early detection of this anomaly. Researchers 
have categorised these detection techniques as on-the-fly, 
ahead of time and post mortem techniques [3]. Broadly 
classified as Static and Dynamic techniques. Static data 
race detection techniques or ahead of time techniques use 
compile time heuristics. On-the-fly approaches are dynamic 
in nature. Considering the frequency of occurrences of data 
races in a multi-threaded application, most studies have 
focused upon dynamic detection of data races keeping a 
check over the number of false positives as minimum. We 
observed that race detectors or tools developed by various 
researchers were primarily enhancements over previously 
written tools with an attempt to minimize false positives. 
Since data races are more frequent in multi-threaded 

———————————————— 
 Devesh Lowe is currently pursuing Phd and is an assistant 

professor, Jagan Institute of Management Studies, Rohini, New 
Delhi, India, 110085,devesh.lowe@jimsindia.org 

 Mithilesh Kumar is an Associate Professor, Lovely Professional 
University Punjab, India, mithilesh.21436@lpu.co.in 

 Bhavna Galhotra is pursuing Phd and is an assistant professor, 
Jagan Institute of Management Studies, Rohini, New Delhi, India, 
110085, bhawna.galhotra@jimsindia.org 
 

 

mailto:devesh.lowe@jimsindia.org
mailto:2mithilesh.21436@lpu.co.in
mailto:bhawna.galhotra@jimsindia.org


INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020       ISSN 2277-8616 

453 
IJSTR©2020 

www.ijstr.org 

class Test{ 

  static boolean x = false; 

  static void foo() {x = true;} 

  public static void main(String []arg) { 

    ForkJoinPool.commonPool().execute(Test::foo); 
    while (!x); 

    System.out.print(x); 

     } 

} 
 

programming architecture, many researchers have 
focussed on developing detection algorithms based on 
programming languages like java [4] [5] [6] which has been 
a main stay of object oriented programming based model 
development. In this paper authors have presented an 
outline of problems caused by this synchronization bug in 
java and have presented a study on various data race 
detection algorithms oriented towards race detection in java 
programming language. Section II of this paper focuses on 
how data races are caused in unsynchronised code in java 
[7]. It also discusses the critical section of program where 
data races may be hidden and highlights the existing tools 
used available in java to debug a data race. Section III 
provides an insight on data race detection techniques 
based on java as developed by various researchers. In 
section IV authors provide a summarized view of various 
techniques and a comparative analysis [1]. 
 

2. DATA RACES IN JAVA 
Java is primarily a multi-threaded programming language 
which calls for parallel execution of threads. These threads 
execute same piece of code but independent of each other 
using some part of shared accessed memory. Threads are 
executed using a single or multiple hardware setup using 
the feature of time-slicing for parallel execution. For inter-
thread communication and to avoid any run-time confusion 
regarding resources Java Virtual Machine uses a concept of 
synchronization in form of a monitor which is attached to 
every object in java which only a thread can lock or unlock. 
At any given time only one thread is allowed to lock a 
monitor and any other thread cannot unlock that particular 
monitor until the lock is held by previous monitor. A lock on 
an object is acquired using a synchronized statement which 
hold all other operations until a lock action is completed. An 
unlock action is only performed once the body of 
synchronized stamen is fully completed either sequentially 
or abruptly. Since shared memory is accessed in parallel 
mode, it gives a possibility that multiple threads may try to 
access same location in memory giving chance to a Data 
Race to happen if code is not properly synchronized for 
shared resources access. 
As defined in Java Memory Model documentation (JMM) 
[8], a data race is an anomalous situation which arises 
when two or more threads try to access a common shared 
resource when one of them is in write mode. This generally 
happens when incorrectly synchronized programs start 
throwing counterintuitive results. A common way any 
compiler handles ordering of execution of threads is using 
happens before relation [9]. This partial or complete 
ordering is maintained to guarantee the sequential 
consistency. Sequential consistency ensures that there is 
total order over all individual actions making them atomic 
and completely visible to all threads. This also ensures that 
all executions of program will be sequentially consistent 

provided 
there 

are no 
data 

races. It 
has also 

been 

observed that a data race is a property of execution not of a 
program. A program which is properly synchronized and 
uses volatile shared variables is expected to produce no 
data race but can deviate from expected output during 
execution. Let’s consider an example in java (figure 1) 
which demonstrates presence of race condition. In the code 
presented in Figure 1, we can observe data races in every 
part. Program uses ‘x’ variable which is not declared 
volatile. By definition we have possibility of data race in this 
code as there is no synchronized order in read and write 
operations of ‘x’. Possible outcomes of this program include 
printing TRUE or False or an indefinite loop. Lamport [9] 
suggested happens before relationship between two events 
based on the sequence in which they are reported. In java 
the wait method of the Object class has lock and unlock 
actions associated with ordering of events to establish the 
HB relationship and order of execution. But the presence of 
HB relationship doesn’t guarantee that the events actually 
happened in the same order. HB relation just defines when 
data race takes place.  An inter-thread action that can be 
performed by any thread and can be directly or indirectly 
viewed or affected by another thread can be categorized in 
java as under: 

 Read action: non-volatile read 

 Write action: non-volatile write 

 Synchronized action: volatile read and write, lock, 
unlock, start and stop of thread 

 External action: action observable outside of its 
execution 

 Thread divergence action: performed by a thread in an 
infinite loop 
 

3. DATA RACE DETECTION IN JAVA 
 Problem of data race is generally termed as menace 

because of various reasons like they are not traceable 
until the program is moved into execution phase. 
Hardware and multicore systems involved in 
development and quality assurance are very different 
from the actual systems, which increases the volume 
of data, the unpredictability increases. Also, data race 
is not reproducible as it depends on the thread timings. 
But this menace can cause major damage to global 
data structures because program can continue to work 
normal with growing damage in the background [10]. 
Researchers have classified data race detection in 
three categories as [11] 

 Static race detection algorithms (ahead of time) 

 Dynamic race detection algorithms  (on the fly 
methods) 

 Hybrid race detection algorithms (post mortem 
techniques) 

  

 All the three methods have their own benefits and 
drawbacks. In the scope of current research we have 
focussed on all previous work done and implemented 
using java as object oriented programming language 
implementation. Remarkable work has been done in 
the past where java based algorithms were used to 
detect data races. In the following sub-section we 
present the objective and outcomes of these 
algorithms as measured by researchers. [12]  

  

Figure 1 Data Race Example 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020       ISSN 2277-8616 

454 
IJSTR©2020 

www.ijstr.org 

 Static Race Detection 

 A static technique for race detection is not dependent 
for program to execute. Since it makes its way into all 
the possible branches of code, it also explores the 
possibility of presence of a data race in that part of 
code which would otherwise rarely comes into 
execution. Many techniques are based on strong type 
checking [13] [14] [15] [16], where authors provided a 
strong type-checking mechanism to avoid data race 
and deadlock. They proposed a system where locking 
system for multi-threaded application is provided in 
form of type principle. They also proposed ownership 
classes for locking to be arranged in form of tree 
based data structure for partial ordering for classes. 
Use of ownership classes helps in controlling data 
races as lock that protects the object also protects its 
encapsulated objects. The implemented system was 
based on JVM with strongly typed annotations but also 
had a limitation that it was only available for java [3]. 

  Flanagan and Qadeer [4] suggested a stronger 
non-interference property atomicity which was to be 
included as annotation in statement block and 
functions with keyword atomic. This property 
guaranteed the execution of all atomic functions 
independently of each other in an interleaved multi-
threaded program. This greatly reduced the interaction 
between threads. Its implementation is available in 
java.util.vector library. Its limitation was that it cannot 
be used independently i.e. its dependence on other 
special programming language and it also needed 
more tools to implement. David Clarks et al. [17] 
proposed a static analysis approach based on java 
which used shared variables in programs and 
summarizes them, and identifies to detect usage in 
data races. It prepares a comparison of these shared 
variables and categorises them as per whether data 
race may exist or a data race must exist.  

 The benefit of using static techniques is that they 
analyse the most part of code and are able to detect 
every possible race. But researchers [18] also note 
that most static techniques have a tendency to raise a 
lot of false positives. So current programming 
techniques are of little help to programmers.  

4. DYNAMIC RACE DETECTION 

 Dynamic data race detection algorithms are based on 
on-the-fly techniques i.e. program analysis. Since it 
traverses through the most visited paths and checks 
only those shared resources which are used in the 
execution of the programs, it gives the most accurate 
results. Probably that’s the reason that most data race 
detection algorithms today are using dynamic data 
race detection. Moreover static analysis gives a 
problem of most false positives i.e. maximum false 
alarms, which dynamic race detectors overcome. But 
dynamic race detectors do come with extra overheads 
of computations and line of code. Moreover they can 
only detect data races that come in the current 
execution path and simply ignore the races which were 
not part of the current execution [19]. This has been a 
major area of concern as the number of feasible paths 
can grow exponentially under some execution but that 
is not considered under Dynamic DRD [18]. This 
opens up the space for many undetected data races. It 

is also observed [3] that under some instances we find 
that bulk part of the code never comes into execution 
leaving scope of undetected data races like in 
operating systems and device drivers. 

 One of the most popular work in field of dynamic data 
race detection is Eraser [19] which implemented 
lockset based algorithm using binary rewriting 
technique to monitor shared resources. It is an 
extension of Lamport’s Happens Before [9] algorithms. 
In original work Lamport defined a partially ordered set 
of locks for shared resources using synchronization 
events. Eraser’s limitations was identified as extra 
effort of storing too much information about each 
thread and too much dependence on synchronization 
operation. 

 Another race detection technique Ravegeddon was 
presented by Mahdi et. al. [18], where they proposed 
to race directed scheduling which was applicable 
beyond the use of java. It was based on created types 
in java along with concolic functions and helper 
functions for identifying data races. In TRaDe [20]Mark 
Christiens suggested an algorithms for identifying 
topological race detection.  

 In 2009, Daniel Marino et. al. [21]presented an 
algorithms LiteRace, which was a lightweight race 
detector implemented using Microsoft Phoenix 
compiler, which samples and analyses only certain 
portions of execution code and claimed to detect 70% 
of more data races. Another approach of dynamic 
detection of data races came with Kaushik et.al.’s 
paper [22] with an algorithm which executed multiple 
replicas of the program with complementary thread 
schedules. Its aim was to detect a data race early and 
program to diverge. Their system Frost detected data 
race by comparing the state of replicas executing 
complementary schedules. Though it provided extra 
overhead for replication model but authors were able 
to keep it under control when spare cores were 
involved for increased utilization.  

 With a novel approach of precision based dynamic 
data race detection authors [23] introduced structured 
parallelism. Their algorithm uses less space in 
memory and worked in parallel and utilized fewer 
resources. Konstantin [6] presented ThreadSanitizer: a 
dynamic data race detection tool based on hybrid 
technique as a combination of happens before and 
Lockset. They introduced dynamic annotations as user 
API which informs a user about any synchronization 
bug if occurs. Eric Bodden [5] presented an algorithm 
Racer which was primarily based on Eraser [19] and 
proposed an implementation in java using three new 
pointcuts in aspect oriented language AspectJ. In 2002 
Choi et al. [24] presented another dynamic data race 
detection mechanism which they claimed to be more 
precise and had lowered the problem of false 
positives. Also they tried to keep runtime overhead in 
the range of 13% to 42%.  

 Benjamin Wood [25] suggested the use of fast 
instrument bias which reduces or eliminates the 
overhead cost of implementing dynamic data race 
detection algorithms.  

 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020       ISSN 2277-8616 

455 
IJSTR©2020 

www.ijstr.org 

Hybrid Race Detection 

 Hybrid detection techniques are based on a 
combination of static and dynamic race detection 
techniques. It uses the extensibility of static analysis 
with accuracy of dynamic tools. These techniques 
analyse log or trace data post execution of the 
program. They don’t suffer from the extra 
computational overhead as dynamic techniques but 
have the same limitation i.e. they can detect data 
races along the execution path only.  

 Konstantin [6] presented ThreadSanitizer: a dynamic 
data race detection tool based on hybrid technique as 
a combination of happens before and Lockset. They 
introduced dynamic annotations as user API which 
informs a user about any synchronization bug if 
occurs.  

 Ronsse and Bosschere [26] presented a hybrid 
technique for cyclic debugging for non-deterministic 
parallel programs. They used two phases of program 
i.e tracing a program execution called record and 
using thus obtained information for next supported re-
execution called Play. Once a data race occurs, it 
stops the execution and notifies the user. It uses the 
vector clock for detecting the conflicting memory 
access by concurrent segments and applies the 
happens before [9] relations to detect.  

 Another similar tool for record and play specifically 
developed for java was presented by Choi and 
Srinivas [27]. They introduced a logical thread 
scheduling which maintains a sequence of intervals of 
critical events where each interval corresponds to the 
thread accessing shared resources. After execution it 
updates the global clock. It was implemented and 
tested on several java programs and updates of Sun 
Microsystems’ Java Virtual Machine. 

 

5. COMPARATIVE ANALYSIS 
 In the current study we have relied upon the analysis 

and study performed by some noted researchers in 
their research papers. Mehdi Eslamimehr et al. [18] 
prepared a comparative analysis on various tools. 
They compared static detection tool of Mayur Naik et 
al. Chord [28], dynamic tools like FastTrak, goldilocks, 
RaceFuzzer and Pacer. Results indicated that static 
tool explored total 127136 races whereas all four 
dynamic tools together reported a total of 304 races. 
This indicated that dynamic tools though more popular 
but leave scope for more data races to be discovered. 
They also claimed that best Hybrid technique was as 
presented by Robert O’Callahan et al [29] which 
detected most accurate races. Though it also false 
positives and false negatives but still it provides a 
manageable size output to coders. 

  Misun Yuet al. [1] prepared a comparative analysis 
on five pure dynamic data race detection techniques 
namely FastTrack, Acculock, Multi-Lock HB, 
SimpleLock+ and causally precedes. They performed 
analysis using same platform and same input. They 
observed that MultiLock-HB and CP Detection 
detected all data races accurately and precisely, 
however they were slow and took significant 
processing time. SimpleLock+ recorded almost similar 
detection capability and also had a similar speed of 
FastTrack. 

  Aoun Raza [3] presented a detailed study of 
various race detection tools. He studied most of the 
race detection tools and categorized them under 
heads like on-the-fly, post-mortem and ahead of time 
techniques. [30]  

  On the basis of above mentioned studies we 
present a comparative analysis of various data race 
detection techniques in table 1 below. 

  
 
 
 
 
 

Table 1: Comparative analysis of various data race detection techniques 

Algorithms Based on Common Algorithms Advantages Disadvantages 

Static 
Mostly based on strong type 
checking. 

Rccjava, Relay 
Detect almost 
every possible 
data race 

Slow, Raise False Positives 

Dynamic 

SISE (single input single 
Execution) property, Mostly 
based on Lamport’s 
happens Before, or Lockset 
based algorithms 

FastTrack, AccuLock, 
RaceFuzzer, Eraser, 
Racer, SimpleLock+, 
GoldiLocks, 
MultiLockHB 

Fast, Raise less 
false positives, 
Report only real 
races.  

Extra computational 
overhead, detects only those 
races which come across 
the execution path and 
ignore many undetected 

Hybrid 
Combines the Techniques of 
both Static evaluation and 
Dynamic path evaluation 

DejVu, RecPlay, 
RaceMob 

Fast like dynamic 
algorithms 

Can detect data race along 
execution path only. Many 
data races go undetected. 

 

6. CONCLUSION 
It is noteworthy that researchers have accepted data races 
and race conditions as problem areas for multi-threaded 
programs. Efforts are on to prepare suitable detection 
mechanisms for data races. Application logics have been 
developed which detect data races in static way or dynamic 
way but this problem persists. In this paper, authors have 

focused on problem of data races in java based programs. 
Authors acknowledge that data races are primarily 
synchronization bugs which when not detected or handled 
in-time can generate a system crash or cause inconsistency 
in vital transactions. In our future work we propose to focus 
on developing an optimized model for dynamic data race 
detection which should utilize fewer resources and generate 
less false positives. 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020       ISSN 2277-8616 

456 
IJSTR©2020 

www.ijstr.org 

 

REFERENCES 
 

[1]  S. M. P. I. C. D. H. B. Misun Yu, "Expermental performance 
comparison of dynamic data race detction techniaques," 
ETRI, vol. 39, no. 1, February 2017.  

[2]  M. M. S. B. K. O. John Erickson, "Effective Data-Race 
Detection for the Kernel," Operating System Design and 
Implementation , 2010.  

[3]  A. Raza, "A Review of Race detection Mechanisms," in 
Springer-Verlag LNCS 3967, pp 534-543, Berlin, 2006.  

[4]  S. Q. C Flanagan, "types of atomicity," in ACM SIGPLAN, 
2003.  

[5]  K. H. Eric Bodden, "Racer: effective race detector using 
AspectJ," in ISSTA 08, Seatle, USA, 2008.  

[6]  T. I. konstantin serebryany, "thread Sanitizer i data race 
detection technique," in ACM 978-1-60558-793-6/12/9 
WBIA 09, New York, 2012.  

[7]  A. Jimborean, P. Ekemark, J. Waern and S. Kaxiras, 
"Automatic Detection of Large Extended Data-Race-
Free Regions with Conflict Isolation," IEEE Transactions 
on Parallel and Distributed Systems, vol. Volume 29 , no. 
Issue 3 , March-2018.  

[8]  "Chapter 17, threads and locks," [Online]. Available: 
https://docs.oracle.com/javase/specs/jls/se10/html/jls-
17.html#jls-17.4. 

[9]  L. Lamport, "Time Clocks and ordering of events in distributed 
systems," CACM, vol. 21, no. 7, pp. 558-565, 1978.  

[10]  D. T. Vitaly Trifanov, "Data race detection in concurrent java 
programs," in SEE-SECR, Russia, 2012.  

[11]  A. Janessari, "Detection of High Level Synchronization 
anomalies in parallel programs," Springer- International 
Journal of parallel programming, vol. 43, pp. 656-678, 
2015.  

[12]  U. M. V. Dileep Kini, "Data race detection on compressed 
traces," ACM Joint Meeting on European Software 
Engineering Conference and Symposium on the 
Foundations of Software Engineering, no. ISBN: 978-1-
4503-5573-5, 2018.  

[13]  M. R. C Boyapati, "A parameterized type system for race free 
java program," ACM conference on OOP languages, 
2001.  

[14]  S. N. F. C Flanagan, "Type Based Race Detection for Java," 
in Programmin gLanguage des Implementation, 
Vancouver, Canada, 2000.  

[15]  M. A. C Flanagan, "Object Types against Races," in Conf 
Concurrency theory, Eindhovan, Netherland, 1999.  

[16]  T. R. G. C Von Praun, "Static conflict analysis for 
multithreaded object oriented programs," in Conf. 
Programming languages des implementations, San 
diego, CA, USA, 2003.  

[17]  T. M. A. M. David Clark, "Using "must" and "may" summaries 
to detect data races in Java Bytecode that does not rely 
on synchronized consgtruct," in ASWEC 15, 2015.  

[18]  J. P. Mahdi Eslamimehr, "Race Directed Scheduling ro 
Concurrent Programs," in ACM PPoPP 14, 978-1-4503-
2656-8/14/02, Florida, USA, 2014.  

[19]  M. B. g. n. P. S. T. A. Stefan Savage, "Eraser: A Dynamic data 

race detector for multithreaded program," in ACM 
Transactions on Computer systems, Vol 15, No. 4, 
pages 391-411, 1997.  

[20]  K. D. B. Mark Christienss, "TRade: dagta racef detection for 
java," in Springer-Verlag ICCS 2001, LNCS 2074, pp 
761-770, Berlin Heidelberg 2001, 2001.  

[21]  M. M. S. N. Daniel Marino, "LiteRAce: effective Sampling for 
Lightweight data race detection," in ACM 978-1-6058-
392-1/09/06, Dublin Ireland, 2009.  

[22]  P. M. C. J. F. S. N. Kaushik Veeraraghavan, "Detecting and 
surviving data races using complementary schedules," in 
SOSP 11, Cascais, Portugal, 2011.  

[23]  J. Z. V. s. M. V. E. Y. Raghavan Raman, "Scalable and 
precise dynamic data race detection in structured 
parallelism," in ACM PLDI 12- 978-1-4503-1205-9/12/06, 
Beijing, China, 2012.  

[24]  K. L. A. L. V. S. M. S. R. O. Jong Deok Choi, "Efficient and 
Precise Data Race detection for Object Oriented 
Programming Languages," in PLDI 02 ACM 1-58113-
463-0/02/0006, Berlin, 2002.  

[25]  M. C. M. B. G. Benjamin P Wood, "Instrumentation Bias for 
Dynamic Data Race Detection∗," in ACM OOPSLA, 
2017.  

[26]  K. D. B. M ronse, "RecPlay: A fully integrated practical record 
player system," in ACM Transactions on computer 
systems, 1999.  

[27]  H. S. J D Choi, "Deterministic replay of java multi-threaded 
applications," in SIGMETRICS Symposium on parallel 
and Distributed tools, 1998.  

[28]  A. A. J. W. Mayur Naik, "Effective static race detection for 
Java," in ACM Sigplan: Conference on Programming 
language design and implementation, 2006.  

[29]  J. D. C. Robert O'Callahan, "Hybrid Dynamic Data Race 
Detection," in PPoPP '03, ACM 1-58113-588-2/03/0006, 
San Diego, California, 2003.  

[30]  N. G. W. O. S. SAM BLACKSHEAR, "RacerD: 
Compositional Static Race Detection," ACM Program. 
Lang, 2018. 

[31]  S. N. F. Cormac Flanagan, "FastTrack: Efficient and Precise 
Dynamic Race Detection," in ACM 978-1-60558-392-
1/09/06, Dublin , Ireland, 2009.  

[32]  C. Z. G. C. BarisKasikci, "RaceMob: Crowdsourced Data 
Race Detection," in ACM SOSP'1, Fermington, 
Pennsylvania, USA, 2013.  

[33]  Z. h. Q. H. P. W. K Leung, "Data Race: Tame the Beast," 
Journal of Supercomput, vol. 51, pp. 258-278, 2010.  

[34]  C. A. R. Hoare, "Monitors: An Operating System Structuring 
Concept," in Communications of ACM, 1974. Vol 17, No. 
10.  

[35]  D. D. P. M. c. J. F. S. N. Benjamin Wester, "Parallelizing Data 
Race Detection," in ACM ASPLOS'13 978-1-4503-1870-
9/13/03, Houston, Texas, USA, 2013.  

 
 
 
 

 
 
  


