
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

48
IJSTR©2020
www.ijstr.org

Software Defect Prediction Using Linear Svm

Gunjan Arora

 Krishna Gupta

Abstract: An efficient software product can be generated with the help of various techniques properties and procedures provided by software
engineering. Therefore, it is necessary for a software developer to ensure that developed product is less in cost, time and budget. Careful planning is
required before working on software projects because it is large in size and developer must have proper knowledge about the requirement of the user
and all the systematic procedures for the development of software The abstract-present is the model of software engineering which is used to generate
the source code from the sequence model. The code that is generated for the one phase will be given as input to generate code for the second phase.
To generate reliable code, the improvement will be proposed in the abstract-present model. To do so, the SVM classifier will be used to classify required
and non-required code to generate next phase of code. The proposed model is implemented in python and results are analyzed in terms of accuracy.
Precision, recall and F-measure

keywords: Software defect prediction, SVM, LLE-SVM, LTSM-SVM

————————————————————

1 INTRODUCTION
Software is identified as the compilation of programs,
processes, data and documentation. The software for a
particular business is designed by considering the hardware
and operating system. The operating system is also called
platform. Engineering is a methodical technique which is
used to develop software. The designing process of
software is very complicated. Various guidelines are
followed during the designing process [1]. The gaming
techniques of reverse engineering can be categorized into a
number of categories. These categories are known as static
approaches, dynamic approaches and memory patching.
The static approaches are used to analyze the binary data
or application can be analyzed while dynamic approach
communicates with the software during run time [2]. The
memory patching is provided by compelling the required
state through the manipulation of the memory of the game
rather than focusing on the logic of game.

A. Static Approaches
In order to understand the binary files and the way of
application distribution, the disassemblers can be used.
With the help of this technique, the machine language is
converted into assembly language. The availability of
disassembly can detect any type of vulnerabilities present
within the code. This may prove advantageous to the
applications in which these systems are implemented. The
utilized data structures can be recognize in an improved
manner for detecting them within the memory to provide
memory patching [3]. The pseudo-random algorithm
(PRNG) employed within the application can be detected
along with disassembly application. The predictability within
PRNG can predict ingame procedures. For complementing
the disassembly, the accessible binary can be matched with
the custom code. in order to load a custom DLL, the DLL
imports can be examined and the addresses can be
changed. The custom third party code can be executed
prior to or later than the actions of application.

One more entry point for custom code insertion is the
render loop. This loop can be called regularly.

B. Dynamic Approaches
Automation is the most common technique. This technique
is used to interrelate with the games during their runtime.
The bots and macros are utilized for automatic resources
gathering. The spell-combos or skip repetitive tasks are
performed for this purpose [4]. Within the simple case of
macro, the fire key is returned to the mouse wheel. This
creates massive fire during the scrolling. The reverse
engineering is used to develop these tools. The memory
locations having related data can be read directly rather
than sampling of pixels from the display. This approach
provides a rapid and more precise access to the preferred
game. Instead of simulating mouse movement, the
keystrokes can be inserted directly for providing
communication with the game. This approach provides a
good tool support for automation to imitate the keystrokes
and mouse actions. Following are the dynamic approaches
and mouse actions used within reverse engineering [5]:

 Debugger: The breakpoints can be set according to
the essential events involved within an application.
In addition, this gives knowledge about control flow
or changing variables [6].

 Proxy: In the networked games, the network
interaction of the application can be captured,
scrutinized and replayed. The used protocol can be
reverse engineered. The data on-the-fly can be
utilized to adapt the interaction.

 Fuzzing: By sending the arbitrarily generated input
to the game and by monitoring the behaviors, the
susceptibilities can be discovered. This can give a
improved perceptive of the utilized algorithms
applications [7].

C. Memory Patching
With the help of memory patching, the most popular
approach can be applied to improve the run time of an
application. This method is just based on the screening of a
program as a set of the memory which is not valid in other
dynamic approaches. On the basis of need, the bits can be
changed. After this, bits are recognized and understood [8]
[9].
Benefits

 Generic: There memory patching does not depend
on the programming language or employed

 Gunjan Arora Krishna Gupta

 M.Tech Scholar, Yagyavalkya Institute of Technology, Jaipur

 To Assistant Professor Krishna Gupta, YIT, Jaipur

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

49
IJSTR©2020
www.ijstr.org

structures. The memory patching performs
according to the collected and interpreted
programs.

 Fast: The memory patching detects and
manipulates the value of address quickly as
compared to the binary analysis. This situation is
identified normal using bigger and extremely
difficult programs.

 Invisible: Any type of changes made to the memory
remains invisible to the program that needs
modifications. The eternally written value and the
value being added within the program cannot be
distinguished [10].

2 RELATED WORK
The requirement analysis was a very important process in
the software development projects. The utilization of the
particular client requirements and management had several
effects in the software projects. Therefore, the improvement
in this domain in terms of both educational and industrial
fields was essential. In this study, a model of CMMI was
proposed to reveal the development and management
need. It also specified the different objectives and practical
stages [11]. The need of the management and the main
challenges and problems experienced by it were listed in
this work using CMMI model and its normal behavior. An
important role was played by the technical documentation
to in determine the success and failure of any software. For
this purpose, a Software requirement specification
document had been used. This technical document
contained all the needed data like features of the produce.
In the earlier time, various developments were executed to
enhance the quality of the SRS by utilizing different features
of the good. The acceptable success rate for the product
was not attained in outcomes due to which more
improvement was needed. Therefore, an effectual approach
was proposed in this work to solve this issue [12]. In this
study, two main open research directions were provided.
These directions were identified as the computerization of
technological aspects and the requirement of the left over
non-computerized sense making. The human analysts
could only apply these directions. In this study, the issue
regarding the research was reviewed surveyed along with
the research based on the gaining of knowledge. This
supported to provide quantification of the crucial human
factors. This also helped to give upcoming research
directions for capturing the difficulty of hardware reverse
engineering. This could assist to reveal the different
hardware requirements required in the reverse engineering
along with the existing challenges [13]. In this work, a novel
methodology was proposed for reverse engineer and to
recognize the security faults. An analysis was presented in
this work about different communications protocols being
used in ISO/IEC 14443-B public transportation card by
several clients. The application of method along with the
hardware tool can give the access of confidential data. With
the help of proposed approach, the tag-reader interactions
could be captured. In this approach, the tags and readers
were also imitated [14]. This phenomenon applied the idea
of the interesting domain. The programmer behavior within
Reoom encrypted two explanations. Reoom was a new
light-weight static scrutiny system. This system was used in
this type of methods. A number of comparisons were made

amid Womble and the some other third-party open source
applications. The different simulation outcomes revealed
that the results showed improved performance in terms of
some metrics. These metrics were known as overall
precision, recall and accuracy. As compared to Womble, a
better tradeoff was identified among full Reoom. The locals
and parameters used in this study gave improved recall
value than the return types [15]. A methodical survey was
presented on this topic in this work. This review helped to
provide suitable solutions to three research queries. The
model-driven reverse engineering techniques were
scrutinized on the basis of several features such as
extensibility, automation and generosity in the reverse
engineering procedure. In this work, a comparison amongst
fifteen different approaches was performed. These
approaches applied the model-driven reverse engineering
techniques. The different problems that rose within the
model-driven reverse engineering approaches were
explained in this study as well [16]. The imaging metrics of
a triumphant tomography are also presented in this work
along with the mixture of superior 3-D image processing. A
scrutiny to computerize RE was used to reduce the
associated time and cost of these systems. In this paper,
the two PCBs as a four-layered custom design board and
the intricate commercial board were offered as well. The
performances of proposed algorithms were analyzed on the
basis of performed tests. The tested results showed
enhancement in the proposed techniques as compared to
the conventional techniques [17].

3 MOTIVATION
The method in which the code can be generated from the
designed UML model is known as reverse engineering. For
model generation, sequence diagram plays an important
role such that the efficient code can be derived using this
method. To implement the reverse engineering, the base
paper research applies abstract-present model. For
developing the source code of second stage, the source
code of first state is analyzed within the abstract-based
model. To generate the syntax code in this model, the
abstract-syntax tree is generated. For deriving the new
phase source code from sequence diagram, the base paper
visualizes the sequence diagrams. This research aims to
identify the required source code to perform classification
such that the reliability of designed model can be increased.
This research aims of cover the research gaps of previous
researches among which two important are mentioned
below:
1. It is important to classify the sequence diagram that is

defined by the complete flow of project. Based on the
sequence of diagrams, the identification of required and
non-required functions is done in case of base paper.
This research aims to use SVM classifier for
classification such that the dataset of function can be
collected.

2. It is important to minimize the execution time required by
the previous algorithm for classifying the functional and
non-functional requirement functions.

4 RESEARCH METHODOLOGY
The documents behaving similarly exist in similar clusters
based on the relevancy of required information. This
behavior is in relevance to the individual words of

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

50
IJSTR©2020
www.ijstr.org

information content available. Therefore, there is a specific
grouping of words in similar cluster. Certain assumptions
are applied based on this method. The important aim of
clustering the keywords extracted from functional
requirements of software system is to generate the
semantically coherent groups of natural language words. A
set of disjoint groups that includes semantically similar
words are clustered here. A set of disjoint groups that
include semantically similar words are generated here.
Using the clusters in C, the conceptual themes which can
pass the original test are described ideally. Such themes
are useful in representing the quality constraints of a
system. Identifying the optimal cluster configurations that
are best fitted is known as the NP-hard issue that is seen
here. However, near-optimal solutions can be provided
using the certain experiments. The Average Linkage
clustering algorithm is denoted here by AL and test
semantic similarity by TSS. To perform classification, this
research applies linear SVM. Post-pruning techniques are
applied to evaluate the linear SVM. The validation set is
used to prune them. From the IVR dataset, the null and non
null function, are categorized by this research. To perform
data classification, NFR matrix is applied along with the
linear SVM classifier. With respect to execution time and
accuracy, the performances of proposed and existing
techniques are compared to evaluate the improvements
achieved. To perform data classification in existing method,
only NFR matrix was applied. However, the proposed
method aims to perform classification by combining the
NFR matrix with linear SVM algorithm. The NFR is the
Non-functional requirement matrix. ― Matrix‖ is the

representation of Non-functional matrix. ―Clusters of SRS
Words‖ is the segmentation of the Non-functional matrix.
NFR’s label means the target set in which we want to
classify the data which is functional or non –functional
attributes. The java is the programming language file of
which we have taken the dataset for the functional or non-
functional requirements analysis. Initially, to perform
classifications within the systems, linear SVMs were
introduced which were then further also implemented in
regression and rank learning mechanisms. A binary
classifier was the initial form of linear SVM from which
either positive or negative output of the learned function
was achieved. The classifiers that discriminate data points
amongst two categories are known to be the binary SVMs.
An n-dimensional vector is used to represent each data
object. Every data point belongs to only one of the two
classes. A hyperplane is present that separates each of the
linear classifier. The hyperplane that has the largest margin
is picked by SVM such that maximum separation amongst
the two classes can be achieved. The sum of the least
distance from the separation of hyperplane to the closest
data point available within two categories is known as
margin. The unseen of testing data points can be classified
correctly by the hyperplane. For supporting various issues
of nonlinear classification, the mapping from input space to
the feature space is supported by SVM. The mapping
function that would destruct the dimensionality is eliminated
with the help of kernel trick. Thus, the linear classification in
the new space and nonlinear classification in the original
space are made equal here. The input vectors are mapped
to a higher dimensional space in which there is generation

of a maximal separating hyperplane for equalizing the linear
and non-linear classification.

Figure 1: Proposed Methodology

5 EVALUATION
In this section, the dataset is described on which
classification methods are applied for the defect prediction.
The various performance analysis parameters which are
used for the analysis are also described in detail with the
final results

I. Dataset
M1 is a NASA spacecraft instrument written in "C".Data
comes from McCabe and Halstead features extractors of
source code. These features were defined in the 70s in an
attempt to objectively characterize code features that are
associated with software quality. The nature of association
is under dispute. The McCabe and Halstead measures are
"module"-based where a "module" is the smallest unit of
functionality. In C or Smalltalk, "modules" would be called
"function" or "method" respectively. An alternative
interpretation of Fenton's example is that static measures
can never be a definite and certain indicator of the
presence of a fault. Rather, defect detectors based on
static measures are best viewed as probabilistic statements
that the frequency of faults tends to increase in code
modules that trigger the detector. By definition, such
probabilistic statements will are not categorical claims with
some a non-zero false alarm rate. The research challenge
for data miners is to ensure that these false alarms do not
cripple their learned theories. The McCabe metrics are a

No

Yes

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

51
IJSTR©2020
www.ijstr.org

collection of four software metrics: essential complexity,
cyclomatic complexity, design complexity and LOC, Lines of
Code.

6 PERFORMANCE ANALYSIS PARAMETERS

Accuracy: Accuracy is defined as the number of points
correctly classified divided by total number of points
multiplied by 100,

Accuracy =

*100

Precision: In pattern recognition, information retrieval and
binary classification, precision (also called positive
predictive value) is the fraction of relevant instances among
the retrieved instances.

Recall: Recall is the fraction of relevant instances that have
been retrieved over the total amount of relevant instances.

7 RESULT AND DISCUSSION

Figure 2: Implementation

As shown in figure 4.5, the implementation of Linear
classifier is shown for the classification of dataset into
defect and non-defect. When the linear SVM is applied on
the input dataset the accuracy upto 92 percent is achieved
with the CM1 dataset

Table 1: Accuracy Analysis

Algorithm Accuracy

SVM 81.56 percent

LLE-SVM 82.22 percent

LTSA-SVM 88 percent

Linear SVM 92.5 percent

Figure 3: Accuracy Comparison

As shown in figure 3, the accuracy of for the software defect
prediction is analyzed. The accuracy of 92 percent is
achieved using Linear SVM classifier as compared to LTSA
Algorithm with has maximum accuracy 88 percent on CM1
dataset

Table 2: Precision Analysis

Algorithm Precision

SVM 84.42 percent

LLE-SVM 86.21 percent

LTSA-SVM 90 percent

Linear SVM 92 percent

Figure 4: Precision Analysis

As shown in figure 4, the precision of for the software defect
prediction is analyzed. The precision of 92 percent is
achieved using Linear SVM classifier

Table 3: Recall Analysis

Algorithm Recall

SVM 91.22 percent

LLE-SVM 94.12 percent

LTSA-SVM 95 percent

Linear SVM 97 percent

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

52
IJSTR©2020
www.ijstr.org

Figure 5 Recall Analysis

As shown in figure 5, the recall of for the software defect
prediction is analyzed. The recall of 92 percent is achieved
using Linear SVM classifier

Table 4: F-measure Analysis

Algorithm Recall

SVM 87 percent

LLE-SVM 89 percent

LTSA-SVM 90 percent

Linear SVM 93 percent

Figure 6 F-measure Analysis

As shown in figure 6, the f-measure of for the software
defect prediction is analyzed. The f-measure of 92 percent
is achieved using Linear SVM classifier

8 CONCLUSION
The experimental results of this research have shown that
for generating source code, reverse engineering is known
to be a highly efficient technique. For generating the source
code, the abstract-present model was applied in the base
paper. For generating a new sequence code, the code of
previous sequence is applied in the abstract-present model.
To generate source code, extraction, abstraction and
visualization processes are applied. This research applies
classification technique prior to the visualization with the

help of which the reliability of reverse engineering based
abstract-present model is increased. The proposed
algorithm is implemented in python and results are
analyzed in terms of certain parameters. In the proposed
method is the based on linear SVM. The parameters are
analyzed in terms of accuracy, precision, recall and F-
measure

9 REFERANCES
[1] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn,

Akinori Ihara, Kenichi Matsumoto, ―A Study of
Redundant Metrics in Defect Prediction Datasets‖,
IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW),
volume 5, issue 14, pp- 1937-1946, 2016.

[2] Chakkrit Tantithamthavorn, Shane McIntosh,
Ahmed E. Hassan, Kenichi Matsumoto,
―Comments on Researcher Bias: The Use of
Machine Learning in Software Defect Prediction‖,
IEEE Transactions on Software Engineering,
Volume: 42, Issue: 11, pp- 758-764, 2016.

[3] B. Shakya, Mark M. Tehranipoor, Swarup Bhunia,
Domenic Forte, ―Introduction to Hardware
Obfuscation: Motivation, Methods and Evaluation‖,
Hardware Protection through Obfuscation.
Springer, ch. 1, pp. 3–32, 2017.

[4] Shahed E. Quadir, Junlin Chen, Mark Mohammad
Tehranipoor, ―A survey on chip to system reverse
engineering‖, Journal on Emerging Technologies in
Computing Systems, vol. 13, no. 1, pp. 6:1–6:34,
2016.

[5] Pramod Subramanyan ; Nestan Tsiskaridze ;
Wenchao Li ; Adrià Gascón ; Wei Yang Tan ;
Ashish Tiwari, ―Reverse Engineering Digital
Circuits Using Structural and Functional Analyses‖,
IEEE Trans. Emerging Topics Computing, vol. 2,
no. 1, pp. 63–80, 2014.

[6] U. Guin, Ke Huang, Daniel DiMase, John M.
Carulli, Mohammad Tehranipoor, Yiorgos Makris,
―Counterfeit Integrated Circuits: A Rising Threat in
the Global Semiconductor Supply Chain,‖
Proceedings of the IEEE, vol. 102, no. 8, pp.
1207–1228, 2014.

[7] S. Bhunia, Michael S. Hsiao, Mainak Banga,
Seetharam Narasimhan, ―Hardware Trojan Attacks:
Threat Analysis and Countermeasures,‖
Proceedings of the IEEE, vol. 102, no. 8, pp.
1229– 1247, 2014.

[8] A. Vijayakumar, Vinay C. Patil, Daniel E. Holcomb,
Christof Paar, Sandip Kundu ―Physical Design
Obfuscation of Hardware: A Comprehensive
Investigation of Device and Logic-Level
Techniques,‖ IEEE Transaction Information
Forensics and Security, vol. 12, no. 1, pp. 64–77,
2017.

[9] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan,
―Heterogeneous Defect Prediction,‖ Transactions
on Software Engineering (TSE), vol. 44, no. 9, pp.
874–896, 2017.

[10] M. Ortu, G. Destefanis, B. Adams, A. Murgia, M.
Marchesi, and R. Tonelli, ―The jira repository
dataset: Understanding social aspects of software
development,‖ in Proceedings of the International

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

53
IJSTR©2020
www.ijstr.org

Conference on Predictive Models and Data
Analytics in Software Engineering (PROMISE), vol.
16, no. 19, pp. 921–928, p. 1, 2015.

[11] Senay Tuna Demirel, Resul Das, ―Software
Requirement Analysis: Research Challenges and
Technical Approaches‖, 6th International
Symposium on Digital Forensic and Security
(ISDFS), vol. 16, no. 15, pp. 994-999, 2018.

[12] Syed Waqas Ali, Qazi Arbab Ahmed, Imran Shafi,
―Process to Enhance the Quality of Software
Requirement Specification Document‖,
International Conference on Engineering and
Emerging Technologies (ICEET), vol. 40, no. 19,
pp. 878–895, 2018.

[13] Marc Fyrbiak, Sebastian Strauß, Christian Kison,
Sebastian Wallat, Malte Elson, ―Hardware Reverse
Engineering: Overview and Open Challenges‖,
IEEE 2nd International Verification and Security
Workshop (IVSW), vol. 19, no. 55, pp. 1951–1958,
2017.

[14] Paula Fraga-Lamas, Tiago M. Fernandez-
Carames, ―Reverse Engineering the
Communications Protocol of an RFID Public
Transportation Card‖, IEEE International
Conference on RFID (RFID), vol. 47, no. 17, pp.
190–194, 2017.

[15] Tuan Anh Nguyen, Christoph Csallner, ―Reverse
Engineering Object-Oriented Applications Into
High-Level Domain Models With Reoom‖,
IEEE/ACM 39th IEEE International Conference on
Software Engineering Companion, vol. 54, no. 17,
pp. 374–385, 2017.

[16] Claudia Raibulet, Francesca Arcelli Fontana and
Marco Zanoni, ―Model-Driven Reverse Engineering
Approaches: A Systematic Literature Review‖,
IEEE, vol. 22, no. 61, pp.109–117, 2017.

[17] Navid Asadizanjani, Mark Tehranipoor, and
Domenic Forte, ―PCB Reverse Engineering Using
Nondestructive X-ray Tomography and Advanced
Image Processing‖, IEEE Transactions on
Components, Packaging and Manufacturing
Technology , Volume: 45, Issue: 6, pp- 106-118,
2017.

