IJSTR

International Journal of Scientific & Technology Research

Home Contact Us
ARCHIVES
ISSN 2277-8616











 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IJSTR >> Volume 9 - Issue 1, January 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Evaluation Of Certain Cosmopolitan Hydrophytes In The Nile River, Aswan District For Their Ecological And Bioactivity Potentials: A Review

[Full Text]

 

AUTHOR(S)

F. Elzahraa Metwally; Amal A. A. Mohamed; Usama A. Mahalel,; Mohamed G. Sheded

 

KEYWORDS

Biofilters, biological activity, Cosmopolitan hydrophytes, Ceratophyllum demersum, Nile River, Polygonum senegalensis, Potamogeton crispus, P. perfoliatus

 

ABSTRACT

Hydrophytes (aquatic plants) are important constituent of the aquatic ecosystem. They have a significant role in the life where they could be used as shelter, food, medicine, biofilters, and for other purposes. However, indigenous information for potential utilization of aquatic plants is lacking. In this study, four cosmopolitan aquatic plants in the Nile River, Aswan district, Egypt were manipulated for their ecological and bioactivity potentials. These plants are Polygonum senegalensis, Ceratophyllum demersum, Potamogeton crispus and Potamogeton perfoliatus. These hydrophytes are widely distributed in different non-polluted and polluted sites in Aswan district.They are of ecological potential as effective bio-filters for a variety of pollutants as manipulated in the present study. The bioactive potentials of these hydrophytes, e.g., antioxidant, antimicrobial, antitumor and other activities are shown.

 

REFERENCES

[1] D. Das, S. Mondal, and S. Mandal, “Studies on Some Economically Important Aquatic Plants of Katwa Subdivision of Burdwan District , West Bengal , India,” vol. 5, no. 6, pp. 961–972, 2016.
[2] J. E. Weaver, E. C. Frederic, and E. Clements, “Plant Ecology, Mc Grawhill Book Company,” Inc. New York London, pp. 288–332, 1938.
[3] R. W. Tiner, “Defining hydrophytes for wetland identification and delineation,” Cold Regions Research and Engineering Laboratory , 2012.
[4] U. N. Uka and K. S. Chukwuka, “Utilization of aquatic macrophytes in Nigerian freshwater ecosystem,” J. Fish. Aquat. Sci, vol. 6, pp. 490–498, 2011.
[5] E. Fremstad and J. Paal, “» Plantetradisjoner på Kamtsjatka–og i Norge «,” Blyttia, vol. 51, pp. 29–38, 1993.
[6] S. Kawanabe and H. Sakai, “Analysis and diagnosis of sown pasture vegetation, 3: Classification and succession of the pasture types in the Tohoku University farm [Miyagi, Japan],” J. Japanese Soc. Grassl. Sci., pp. 245-250, 1992.
[7] G. S. Hunt and R. W. Lutz, “Seed production by curly-leaved pondweed and its significance to waterfowl,” J. Wildl. Manage., vol. 23, no. 4, pp. 405–408, 1959.
[8] Y. Jian, B. Li, J. Wang, and J. Chen, “Control of turion germination in Potamogeton crispus,” Aquat. Bot., vol. 75, no. 1, pp. 59–69, 2003.
[9] R. M. Wersal and K. D. Getsinger, “Chapter 3: Impacts of invasive aquatic plants on waterfowl,” Biol. Control Aquat. plants a best Manag. Pract. Handb., pp. 19–24, 2009.
[10] K. H. Shaltout, E. M. Eid, and T. M. El-Komi, “Phytomass and nutrient value of Potamogeton crispus L. in the water courses of Nile Delta, Egypt,” Rend. Lincei, vol. 27, no. 2, pp. 251–259, 2016.
[11] C. E. Boyd, “Fresh-water plants: a potential source of protein,” Econ. Bot., vol. 22, no. 4, pp. 359–368, 1968.
[12] D. Gunnison and J. W. Barko, “Factors influencing gas
evolution beneath a benthic barrier,” J. Aquat. Plant Manag., vol. 30, pp. 23–28, 1992.
[13] P. A. Aloo, W. O. Ojwang, R. Omondi, J. M. Njiru, and D. O. Oyugi, “A review of the impacts of invasive aquatic weeds on the biodiversity of some tropical water bodies with special reference to Lake Victoria (Kenya), Bio Jl, , 4 (4):pp. 471-482,” 2013.
[14] R. C. Srivastava, “Family Polygonaceae in India,” Indian J. Plant Sci., vol. 3, no. 2, pp. 112–150, 2014.
[15] Z. Wu, P. H. Raven, and D. Hong, Flora of China. Volume 5: Ulmaceae through Basellaceae. China, Sci Press, pp. 505 .2003.
[16] V. Täckholm and L. Boulos, Supplementary Notes to Students’ Flora of Egypt, Secondary Edition. Cairo University, 1974.
[17] Muschler, Reno, “Manual flora of Egypt,” Impr. Misr, SAE, Germany, R. Frielander & Sohn, 1312 pp, 1912.
[18] J. O. Midiwo, A. Yenesew, B. F. Juma, K. L. Omosa, I. L. Omosa, and D. Mutisya, “Phytochemical evaluation of some Kenyan medicinal plants,” in 11th NAPRECA Symposium Book of Proceedings, Antananarivo, Madagascar, 2001, pp. 9–19.
[19] M. A. Zahran and A. J. Willis, “Plant life in the River Nile in Egypt,” Riyadh Mars Publ. House viii, 531p.-. ISBN, vol. 1370310765, pp. 50–53, 2003.
[20] A. Arber, Water plants: a study of aquatic angiosperms. Cambridge University Press, United States of America, New York, 422 pp, 2010.
[21] C. Stace, New flora of the British Isles. Cambridge University Press, 2010.
[22] E. N. Jones, “The Morphology and Biology of Ceratophyllum Demersum L.” Iowa, 1925.
[23] M. Hassib, Distribution of the Plant Communities of Egypt. Fouad I University Press, 1950.
[24] G. E. Hutchinson, “A treatise on Limnology, Limnological Botany, pp. Vol. 3, 1-660.” John Wiley, New York, 1975.
[25] D. Johnson, T. Goward, and D. H. Vitt, Plants of the western boreal forest & aspen parkland. Lone Pine, 1995.
[26] I. Springuel, “Studies on the natural vegetation of the islands of the First Cataract at Aswan, Egypt,” Unpubl. PhD Diss. Assiut Univ., 1981.
[27] N. D. Simpson, “A report on the weed flora of the irrigation channels in Egypt,” Ministry of Public Works, Government Press, 1932.
[28] V. Tackholm and M. Drar, “Flora of Egypt. Vol. 1,” Fouad I Univ. Cairo, Bull. Fac. Sci, pp. 547, 1941.
[29] M. N. El-Hadidi, “Potamogeton trichoides Cham. and Schlecht,” Egypt. Candollea, vol. 20, pp. 159–165, 1965.
[30] Z. Kaplan and J. Fehrer, “Evidence for the hybrid origin ofpotamogeton× cooperi (Potamogetonaceae): Traditional morphology-based taxonomy and molecular techniques in concert,” Folia Geobot., vol. 39, no. 4, pp. 431–453, 2004.
[31] P. Tobiessen and P. D. Snow, “Temperature and light effects on the growth of Potamogeton crispus in Collins Lake, New York State,” Can. J. Bot., vol. 62, no. 12, pp. 2822–2826, 1984.
[32] I. Springuel, “Plant life in Nubia. V. Aquatic plants in Egyptian Nubia,” Aswan Sci. Tech. Bull, vol. 8, pp. 185–211, 1987.
[33] A. Coles, "Pondweeds of Great Britain and Ireland (BSBI Handbook No. 8). Bot Soc of the British Isles, London:,.352 pp, 1998.
[34] T. Petr, “Fish, fisheries, aquatic macrophytes and water quality in inland waters,” Water Qual. Bull., vol. 12, no. 3, pp. 103–128, 1987.
[35] N. J. Ghavzan, V. R. Gunale, D. M. Mahajan, and D. R. Shirke, “Effects of environmental factors on ecology and distribution of aquatic macrophytes,” Asian J. Plant Sci., vol. 5, no. 5, pp. 871–880, 2006.
[36] H. Brix and H.-H. Schierup, “The use of aquatic macrophytes in water-pollution control,” Ambio. Stock., vol. 18, no. 2, pp. 100–107, 1989.
[37] G. A. Moshiri, Constructed wetlands for water quality improvement. CRC Press, United States of America, pp.626, 1993.
[38] P. K. Rai, “Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes,” Crit. Rev. Environ. Sci. Technol., vol. 39, no. 9, pp. 697–753, 2009.
[39] M. A. Fawzy, N. E. S. Badr, A. El-Khatib, and A. Abo-El-Kassem, “Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile,” Environ. Monit. Assess., vol. 184, no. 3, pp. 1753–1771, 2012.
[40] P. A. Lone, A. K. Bhardwaj, and K. W. Shah, “Macrophytes as powerful natural tools for water quality improvement,” Res J Bot, vol. 9, no. 2, pp. 24–30, 2014.
[41] O. Ravera, “Monitoring of the aquatic environment by species accumulator of pollutants: a review,” J. Limnol., pp. 63–78, 2001.
[42] M. I. Lone, Z. He, P. J. Stoffella, and X. Yang, “Phytoremediation of heavy metal polluted soils and water: progresses and perspectives,” J. Zhejiang Univ. Sci. B, vol. 9, no. 3, pp. 210–220, 2008.
[43] R. Carbiener, “Aperçu sur quelques effets de la pollution des eaux douces de la zone tempérée sur les biocénoses aquatiques,” Bull. Sect. Geogr. Minist. Educ. Nation, vol. 80, pp. 45–132, 1969.
[44] A. Kohler and G. H. Zeltner, “Der Einfluss von Be-und Entlastung auf die Vegetation von Fliessgewässern,” Daten und Dokumente zum Umweltschutz Sonderr. Umwelttagung, vol. 31, pp. 127–139, 1981.
[45] G. G. Muntyanu and V. I. Muntyanu, “Biomonitoring of some heavy metals in the Dubossary (Dubasari) Reservoir,” Hydrobiol. J., vol. 42, no. 2, 2006.
[46] P. Malec, M. Maleva, M. N. V Prasad, and K. Strzałka, “Copper toxicity in leaves of Elodea canadensis Michx.,” Bull. Environ. Contam. Toxicol., vol. 82, no. 5, pp. 627–632, 2009.
[47] P. Krems, M. Rajfur, M. Wacławek, and A. Kłos, “The use of water plants in biomonitoring and phytoremediation of waters polluted with heavy metals,” Ecol. Chem. Eng. S, vol. 20, no. 2, pp. 353–370, 2013.
[48] T. Sawidis, M. K. Chettri, G. A. Zachariadis, and J. A. Stratis, “Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece,” Ecotoxicol. Environ. Saf., vol. 32, no. 1, pp. 73–80, 1995.
[49] N. Liu and Z. Wu, “Growth and antioxidant response in Ceratophyllum demersum L. under sodium dodecyl sulfate (SDS), phenol and joint stress,” Ecotoxicol. Environ. Saf., vol. 163, pp. 188–195, 2018.
[50] O. T. Owiti, “Assessment of selected plants growing along Nairobi River for uptake of copper, zinc and cadmium,M.c.s in Environmental Legislation and Management in the Jomo Kenyatta University of Agriculture and Technology, Nairobi County, Kenya.” 2015.
[51] P. J. Rice, T. A. Anderson, and J. R. Coats, “Phytoremediation of herbicide-contaminated surface water with aquatic plants,” ACS Publications, 1997.
[52] A. Kohler and S. Schneider, “Macrophytes as bioindicators,” Arch. Hydrobiol., Suppl, vol. 147, pp. 17–31, 2003.
[53] K. Szoszkiewicz, S. Jusik, and T. Zgoła, Klucz do oznaczania makrofitów dla potrzeb oceny stanu ekologicznego wód powierzchniowych. Inspekcja Ochrony Środowiska, pp. 309, 2010.
[54] V. C. Pandey and K. Bauddh, Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation. Elsevier, Candice Janco, India, pp 603,
2018.
[55] T. M. Galal, E. A. Farahat, and M. Fawzy, “Submerged macrophytes as bioindicators for pollution in Lake Mariut,” Ecol. Mediterr., vol. 34, p. 84, 2008.
[56] M. Foroughi, P. Najafi, and S. Toghiani, “Trace elements removal from waster water by Ceratophyllum demersum,” J. Appl. Sci. Environ. Manag., vol. 15, no. 1, 2011.
[57] M. Karataş, M. Aasim, and M. Dogan, “Efficacy of in vitro propagated coontail (Ceratophyllum demersum L.) on quality of different water samples,” Fresen Env. Bull, vol. 25, pp. 5113–5511, 2016.
[58] M. I. Soliman, A. A. Ibrahim, R. M. Rizk, and N. S. Naser, “Phytoremediation, Biochemical and Molecular Studies of Some Selected Hydrophytes in Egypt,” J. Appl. Sci., vol. 19, no. 7, pp. 708–717, 2019.
[59] W. Yushu and Y. Guoying, “Purification of dianchi lake by radical submerged hydrophyte (pot amogeton crispus)[j],” Acta Sci. Circumstantiae, vol. 4, 1991.
[60] G. Bonforte, L. Guzzi, W. Martinotti, and G. Queirazza, “Identification and choice of a biological indicator for the study of the contamination of a river environment by heavy metals,” Chem. Ecol., vol. 2, no. 3, pp. 199–204, 1986.
[61] M. N. Rashed, “Biomarkers as indicator for water pollution with heavy metals in rivers, seas and oceans,” Egypt South Val. Univ., 2002.
[62] J. Z. Hu, G. X. Shi, Q. S. Xu, X. Wang, Q. H. Yuan, and K. H. Du, “Effects of Pb 2+ on the active oxygen-scavenging enzyme activities and ultrastructure in Potamogeton crispus leaves,” Russ. J. Plant Physiol., vol. 54, no. 3, pp. 414–419, 2007.
[63] G. Lu et al., “Heavy metals contamination and accumulation in submerged macrophytes in an urban river in China,” Int. J. Phytoremediation, vol. 20, no. 8, pp. 839–846, 2018.
[64] S. W. Alwan, “A study of Potamogeton crispus L. and P. pectinatus L. plants as accumulative bioindicator of PAHs compounds pollutants in Diwaniyah River,” Euphrates J. Agric. Sci., vol. 7, no. 1, pp. 11–22, 2015.
[65] H. Li et al., “Evaluation of the potential of Potamogeton crispus and Myriophyllum spicatum on phytoremediation of atrazine,” Int. J. Environ. Anal. Chem., vol. 99, no. 3, pp. 243–257, 2019.
[66] J. M. Cufrey and W. M. Kemp, “Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments,” Limnol. Oceanogr., vol. 37, no. 7, pp. 1483–1495, 1992.
[67] V. Munteanu and G. Munteanu, “Biomonitoring of mercury pollution: A case study from the Dniester River,” Ecol. Indic., vol. 7, no. 2, pp. 489–496, 2007.
[68] S. Pajević, M. Borišev, S. Rončević, D. Vukov, and R. Igić, “Heavy metal accumulation of Danube river aquatic plants—indication of chemical contamination,” Cent. Eur. J. Biol., vol. 3, no. 3, pp. 285–294, 2008.
[69] Š. Mechora, V. Stibilj, and M. Germ, “The uptake and distribution of selenium in three aquatic plants grown in Se (IV) solution,” Aquat. Toxicol., vol. 128, pp. 53–59, 2013.
[70] A. Grúz et al., “Monitoring of heavy metal burden in mute swan (Cygnus olor),” Environ. Sci. Pollut. Res., vol. 22, no. 20, pp. 15903–15909, 2015.
[71] G. Buonocore, S. Perrone, and M. L. Tataranno, “Oxygen toxicity: chemistry and biology of reactive oxygen species,” in Seminars in Fetal and Neonatal Medicine, 2010, vol. 15, no. 4, pp. 186–190.
[72] D. Joseph and J. George, “Remedial Potentials of Sweet Leaf: A Review on Stevia rebaudiana,” methods, vol. 1, no. 3, p. 4. Int. J. Pharm. Sci. Rev. Res., 54(1) Article No. 16, pp. 91-95.
[73] V. Lobo, A. Patil, A. Phatak, and N. Chandra, “Free radicals, antioxidants and functional foods: Impact on human health,” Pharmacogn. Rev., vol. 4, no. 8, p. 118, 2010.
[74] J. Lü, P. H. Lin, Q. Yao, and C. Chen, “Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems,” J. Cell. Mol. Med., vol. 14, no. 4, pp. 840–860, 2010.
[75] S. B. Nimse and D. Pal, “Free radicals, natural antioxidants, and their reaction mechanisms,” Rsc Adv., vol. 5, no. 35, pp. 27986–28006, 2015.
[76] N. F. Santos-Sánchez, R. Salas-Coronado, C. Villanueva-Cañongo, and B. Hernández-Carlos, “Antioxidant compounds and their antioxidant mechanism,” in Antioxidants, IntechOpen, 2019.
[77] E. C. S. Little, Handbook of utilization of aquatic plants. A review of world literature., no. 187. 1979.
[78] F. T. D. Bothon, E. Debiton, F. Avlessi, C. Forestier, J.-C. Teulade, and D. K. C. Sohounhloue, “In vitro biological effects of two anti-diabetic medicinal plants used in Benin as folk medicine,” BMC Complement. Altern. Med., vol. 13, no. 1, p. 51, 2013.
[79] S. S. Karale, S. A. Jadhav, N. B. Chougule, S. S. Awati, and A. A. Patil, “Evaluation of Analgesic, Antipyretic and Anti-Inflammatory Activities of Ceratophyllum Demersum Linn. in Albino Rats,” Curr. Pharma Res., vol. 3, no. 4, p. 1027, 2013.
[80] M. L. Roberts and R. R. Haynes, “Flavonoid systematics of Potamogeton subsections perfoliati and praelongi (Potamogetonaceae),” Nord. J. Bot., vol. 6, no. 3, pp. 291–294, 1986.
[81] D. H. Les and D. J. Sheridan, “Biochemical heterophylly and flavonoid evolution in North American Potamogeton (Potamogetonaceae),” Am. J. Bot., vol. 77, no. 4, pp. 453–465, 1990.
[82] P. Waridel, J.-L. Wolfender, J.-B. Lachavanne, and K. Hostettmann, “ent-Labdane diterpenes from the aquatic plant Potamogeton pectinatus,” Phytochemistry, vol. 64, no. 7, pp. 1309–1317, 2003.
[83] D. Ren and S. Zhang, “Separation and identification of the yellow carotenoids in Potamogeton crispus L.,” Food Chem., vol. 106, no. 1, pp. 410–414, 2008.
[84] S. R. Devi and M. N. V Prasad, “Antioxidant capacity of Brassica juncea plants exposed to elevated levels of copper,” Russ. J. plant Physiol., vol. 52, no. 2, pp. 205–208, 2005.
[85] M. F. Fareed, A. M. Haroon, and S. A. Rabeh, “Antimicrobial activity of some macrophytes from Lake Manzalah (Egypt),” Pakistan J. Biol. Sci., vol. 11, no. 21, p. 2454, 2008.
[86] M. E. A. Ziada, I. A. Mashaly, M. A. El-Monem, and M. Torky, “Economic potentialities of some aquatic plants growing in north east Nile delta, Egypt,” J. Appl. Sci., vol. 8, no. 8, pp. 1395–1405, 2008.
[87] M. Sridevi, B. Kondala Rao, and D. Sathiraju, “Sensitivity of Bacteria Isolated from Champavathi Estuary to Some Medicinal Plants of Vizianagaram district, East coast of India.,” Drug Invent. Today, vol. 2, no. 7, 2010.
[88] S. H. Bhosale, T. G. Jagtap, and C. G. Naik, “Antifungal activity of some marine organisms from India, against food spoilage Aspergillus strains,” Mycopathologia, vol. 147, no. 3, pp. 133–138, 1999.
[89] A. M. Haroon, “Effect of some macrophytes extracts on growth of Aspergillus parasiticus,” Egypt. J Aquat. Res, vol. 32, pp. 301–313, 2006.
[90] H. Verma, P. R. Patil, R. M. Kolhapure, and V. Gopalkrishna, “Antiviral activity of the Indian medicinal plant extract, Swertia chirata against herpes simplex viruses: A study by in-vitro and molecular approach,” Indian J. Med. Microbiol., vol. 26, no. 4, p. 322, 2008.
[91] W. Shin, K. Lee, M. Park, and B. Seong, “Broad‐spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses,” Microbiol. Immunol., vol. 54, no. 1, pp. 11–19, 2010.
[92] M. N. Sohail, F. Rasul, A. Karim, U. Kanwal, and I. H. Attitalla, “Plant as a source of natural antiviral agents,” Asian J. Anim. Vet. Adv, vol. 6, pp. 1125–1152, 2011.
[93] P. R. O. Kio and B. A. Ola-Adams, “Economic importance of aquatic macrophytes,” conf. in Ecological implications in the development of water bodies in Nigeria, New Bussa, 17-20 Jun 1987, 1987.
[94] S. Bhowmik, B. K. Datta, and A. K. Saha, “Ethno medicinal and phytochemical screening of some hydrophytes and marsh plants of Tripura, India,” World Appl. Sci. J., vol. 22, pp. 1453–1459, 2013.
[95] N. R. Farnsworth, “Biological and phytochemical screening of plants,” J. Pharm. Sci., vol. 55, no. 3, pp. 225–276, 1966.
[96] J. Jankun, S. H. Selman, R. Swiercz, and E. Skrzypczak-Jankun, “Why drinking green tea could prevent cancer,” Nature, vol. 387, no. 6633, p. 561, 1997.
[97] K. Yoshino, K. Ogawa, T. Miyase, and M. Sano, “Inhibitory effects of the C-2 epimeric isomers of tea catechins on mouse type IV allergy,” J. Agric. Food Chem., vol. 52, no. 15, pp. 4660–4663, 2004.
[98] H. K. Mangold and E. Stahl, “Thin-layer chromatography,” United States of America, New York, 473 pp. 1969.
[99] A. J. P. Smolders, L. H. T. Vergeer, G. Van der Velde, and J. G. M. Roelofs, “Phenolic contents of submerged, emergent and floating leaves of aquatic and semi‐aquatic macrophyte species: why do they differ?,” Oikos, vol. 91, no. 2, pp. 307–310, 2000.
[100] E. A. Kurashov, E. V Fedorova, J. V Krylova, and G. G. Mitrukova, “Assessment of the potential biological activity of low molecular weight metabolites of freshwater macrophytes with QSAR,” Scientifica (Cairo)., , 2016.
[101] M. G. Ghobrial, S. Omar, and T. Adnan, “Potential for finding new bioactive agents from selected aquatic plant extracts against enteric bacteria,” Egypt. J. Nat. Toxins, vol. 4, no. 2, pp. 12–25, 2007.
[102] M. G. Ghobrial, H. S. Nassr, and A. W. Kamil, “Bioactivity effect of two macrophyte extracts on growth performance of two bloom-forming cyanophytes,” Egypt. J. Aquat. Res., vol. 41, no. 1, pp. 69–81, 2015.
[103] I. Orhan, B. Sener, T. Atıcı, R. Brun, R. Perozzo, and D. Tasdemir, “Turkish freshwater and marine macrophyte extracts show in vitro antiprotozoal activity and inhibit FabI, a key enzyme of Plasmodium falciparum fatty acid biosynthesis,” Phytomedicine, vol. 13, no. 6, pp. 388–393, 2006.
[104] A. M. Omar, A. Salah Taha, and A. AA Mohamed, “Microbial Deterioration of Some Archaeological Artifacts: Manipulation and Treatment,” Eur. J. Exp. Biol., vol. 08, no. 04, pp. 1–7, 2018.
[105] E. Marquez-Rios and C. L. Del-Toro-Sanchez, “Antioxidant peptides from terrestrial and aquatic plants against cancer,” Curr. Protein Pept. Sci., vol. 19, no. 4, pp. 368–379, 2018.
[106] A. M. M. Youssef and Z. A. S. El-Swaify, “Anti-Tumour Effect of two Persicaria Species Seeds on Colon and Prostate Cancers,” Biomed. Pharmacol. J., vol. 11, no. 2, pp. 635–644, 2018.
[107] D. D. Ren, H. X. Huang, G. H. Peng, H. B. Wang, and S. H. Zhang, “Study on antitumor effect and immune function of carotenoids extract from Potamogeton crispus L,” Food Sci, vol. 27, pp. 210–212, 2006.
[108] R. Santhanam, R. Rajan, and S. Ramesh, Freshwater phytopharmaceutical compounds. CRC Press, Taylor & Francis group, pp. 238, 2013.
[109] T. Odugbemi, A textbook of medicinal plants from Nigeria. Tolu Odugbemi, pp. 629, 2008.
[110] A. H. Aly et al., “Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense,” J. Nat. Prod., vol. 71, no. 6, pp. 972–980, 2008.
[111] D. Weber, “Endophytic fungi, occurrence and metabolites,” in Physiology and Genetics, Springer, pp. 153–195, 2009.
[112] A. D. Rabearivony et al., “Ethnobotanical study of the medicinal plants known by men in Ambalabe, Madagascar,” Ethnobot. Res. Appl., vol. 14, pp. 123–138, 2015.
[113] P. Gurlal, “Testing for microbiologically active compounds extracted from members of the family Lamiaceae and other indigenous plants,” 2005.
[114] S. Banerjee, D. Kar, A. Banerjee, and D. Palit, “Utilization of some aquatic macrophytes in Borobandh-a lentic water body in Durgapur, West Bengal, India: Implications for socio-economic upliftment of local stakeholder,” Indian J Appl Pure Biol, vol. 27, no. 1, pp. 83–92, 2012.
[115] M. Dogan, M. Karatas, and M. Aasim, “An efficient in vitro plantlet regeneration of Ceratophyllum demersum L., an important medicinal aquatic plant,” Fresenius Environ. Bull., vol. 24, no. 10b, pp. 3499–3504, 2015.
[116] M. Karatas, M. Dogan, B. Emsen, and M. Aasim, “Determination of in vitro free radical scavenging activities of various extracts from in vitro propagated Ceratophyllum demersum L,” Fresenius Environ. Bull., vol. 24, no. 9a, pp. 2946–2952, 2015.
[117] B. Emsen and M. Dogan, “Evaluation of Antioxidant activity of in vitro propagated medicinal Ceratophyllum demersum L. extracts,” Acta Sci Pol Hortoru, vol. 17, no. 1, pp. 23–33, 2018.
[118] G. F. A. R. M. A. M. W. M. A. A. Kenany, “Evaluation of inhibition activity for some aqueous and ethanolic extracts to Potamogeton perfoliatus L. and Ceratophyllum demersum L as aqueous plants against some pathogenic bacteria,” vol. 29, no. 1B arabic, pp. 95–109, 2011.
[119] R. Malathy and S. A. Stanley, “Studies on the potential therapeutic effects on the aquatic macrophytes namely Cabomba aquatica, Ceratophyllum demersum and Hygrophila corymbosa,” J. Chem. Pharm. Res., vol. 7, no. 4, pp. 479–483, 2015.
[120] P. Lupoae, V. Cristea, D. Borda, M. Lupoae, G. Gurau, and R. M. Dinica, “Phytochemical screening: Antioxidant and antibacterial properties of Potamogeton species in order to obtain valuable feed additives,” J. Oleo Sci., p. ess15023, 2015.
[121] S. M. Ali, R. Siddiqui, and N. A. Khan, “Antimicrobial discovery from natural and unusual sources,” J. Pharm. Pharmacol., vol. 70, no. 10, pp. 1287–1300, 2018.
[122] Y. Du, R. Wang, J. Feng, H. Zhang, and J. Liu, “Screening anti-tumor constituents from Potamogeton crispus for potential utilisation of constructed wetland plant resources,” in Biology and Environment: Proceedings of the Royal Irish Academy, 2014, vol. 114, no. 2, pp. 79–87.
[123] T. Suresh, I. Sai Mounika, S. Sahana, H. S. Kuriakose, and G. George, “An overview on extraction and purification of flavonoids from medicinal plants,” World Journal of Pharmaceutical Research V.7 p. 172-188, 2018.
[124] C. P. Khare, Indian herbal remedies: rational Western therapy, ayurvedic, and other traditional usage, Botany. Springer science & business media, New York, pp. 524, 2004.
[125] A. D. Taranhalli, A. M. Kadam, S. S. Karale, and Y. B. Warke, “Evaluation of antidiarrhoeal and wound healing potentials of Ceratophyllum demersum Linn. whole plant in rats,” Lat. Am. J. Pharm., vol. 30, pp. 297-303. 2011.
[126] M. M. El-Sheekh, A. M. Haroon, and S. Sabae, “Activity of some Nile River aquatic macrophyte extracts against the cyanobacterium Microcystis aeruginosa,” African J. Aquat. Sci., vol. 42, no. 3, pp. 271–277, 2017.