IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 3, March 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Umbilical Hypersurface Of A Generalized Recurrent Kaehlerian Weyl Spaces

[Full Text]

 

AUTHOR(S)

Girish Dobhal, Nitin Uniyal, Virendra Prasad

 

KEYWORDS

Kaehlerian Weyl space, generalized recurrent Weyl space, Concircular generalized recurrent, Projective generalized recurrent.

 

ABSTRACT

In the present paper we have studied umbilical hypersurface of a generalized recurrent Kaehlerian Weyl spaces. An 2n-dimensional generalized recurrent Kaehlerian Weyl space with generalized recurrent Weyl Concircular curvature tensor and generalized recurrent Kaehlerian Weyl space with generalized recurrent Weyl Projective curvature tensor are defined. The condition for such hypersurface to be Concircular and Projective generalized recurrent have been shown.

 

REFERENCES

[1]. E. Scholz,” Weyl Geometry in Late 20th Century Physics, Beyond Einstein”, Proceedings Mainz Conference, Bach V., Rowe D. (eds.). Einstein Studies. Basel: Birkhäuser, (2008).
[2]. D. M.J. Calderbank & H. Pedersen, “Selfdual Spaces With Complex Structures”, Einstein- Weyl Geometry and Geodesics. Annales de l'institut Fourier, 50, 921-963, (2000).
[3]. S. D. Tiwari, “Geometry of Quantum Theory: Weyl-Kaehler Space”, Proceedings of the International Conference on "Geometry, Analysis and Applications", Banaras Hindu University, World Scientific. 129-138, 2000.
[4]. G. Zlatanov, “Nets in the n-dimensional space of Weyl”, C.R. Acad. Bulgare. Sci. 41, 29-32, 1988.
[5]. B. Tsareva and G. Zlatanov, “On the geometry of the nets in the n-dimensional space of Weyl”, J. Geom. 18,182-197, 1990.
[6]. Norden, “Affinely connected spaces”, GRMFL Moscow, 1976.
[7]. V. Murgescu,” E spaces de Weyl generalized”, Rev. Rour. Math. Pure. et. Appl., XX, (2), 293, 1970.
[8]. L. Zeren Akgun, “On generalized Weyl Spaces”, Bul. Cal. Math. Soc., 91, (4), 267-278, 1999.
[9]. U.P. Singh, and A.K Singh, “On Kaehlerian Conharmonic recurrent and Kaehlerian Conharmonic symmetric space”, Acc. Naz. Dei Lincei, Rend, 62(2), 173-179, 1977.
[10]. L.P Eisenhart, “Riemannian Geometry”, Princeton. 149-150, 1949.
[11]. U.C De, and N Guha, “On generalized recurrent manifolds”, National Academy of Math. India 9, 1-4, 1991.
[12]. Y.B Maralbhavi, and R. Rathamma, “Generalized Recurrent and Concircular Recurrent Manifolds”, Indian J. Pure Appl. Math., 30, 11, 1167-1171, 1999.
[13]. K.S Rawat, and G. Dobhal, “On the bi-recurrent Bochner curvature tensor”, Journal of the Tensor Society, 33-40, 2007.
[14]. G. Dobhal, and A.R Gairola, “Generalized Bi-recurrent Weyl spaces”, Int. Jour. Of Math. Archive, 2(12), 2503-2507, 2011.
[15]. G. Dobhal, N. Uniyal, and V. Prasad. “Generalized recurrent Kaehlerian Weyl Spaces”, Int. Jour. of Emerging Trends in Engineering and Development, 4, 71-79, 2014.