Methodological Investigation On Recycling Of Plastic Polymers - A Review
[Full Text]
AUTHOR(S)
Dr. Barmavatu Praveen, Yalagandala Akshay Kumar, Banoth Sravanthi, H. Ameresh
KEYWORDS
compatibilization, cross-connecting, reusing, ethylene terephthalate polyolefin, polymer
ABSTRACT
Plastics are reasonable, simple to form, and lightweight. These and numerous different favorable circumstances make them extremely encouraging possibility for business applications. In numerous territories, they have generously smothered customary materials. Be that as it may, the issue of reusing still is a significant test. There are both innovative and financial issues that control the advancement in this field. In this, a condition of-craftsmanship review of reusing is furnished together with a viewpoint for the future by utilizing famous polymers, for example, polyolefin, poly (vinyl chloride), polyurethane, and poly (ethylene terephthalate) as models. Various sorts of reusing, essential, optional, tertiary, quaternary, and natural reusing, are talked about together with related issues, for example, compatibilization and cross-connecting. There are different activities in the European Union on research and use of these reusing approaches; chose models are given in this article. Their advancement is reflected by conceded licenses, the greater part of which have an exceptionally constrained extension and barely spread certain advances. Worldwide acquaintance of waste use systems with the polymer showcase is right now not completely grew, however has a tremendous potential.
REFERENCES
[1]. K. H. Zia, H. N. Bhatti, I. A. Bhatti, React. Funct. Polym. 2007, 67, 675 – 692.
[2]. D. K. A. Barnes, F. Galgani, R. C. Thompson, M. Barlaz, Philos. Trans. R. Soc. London Ser. B 2009, 364, 1985 – 1998.
[3]. S. M. Al-Salem, P. Lettieri, J. Baeyens, Prog. Vitality Combust. Sci. 2010, 36, 103 – 129.
[4]. C. Baillie, D. Matovic, T. Thamae, S. Vaja, Resour. Conserv. Recycl. 2011, 55, 973 – 978.
[5]. V. Goodship, Sci. Prog. 2007, 90, 245 – 268.
[6]. J. C. Garc an, A. Marcilla, M. Beltr n, Polymer 1998, 39, 2261 – 2267;
[7]. C. C. Kao, O. R. Ghita, K. R. Hallam, P. J. Heard, K. E. Evans, Composites Section A 2012, 43, 398–406.
[8]. J. R. Peeters, P. Vanegas, T. Devoldere, W. Dewulf, J. R. Duflou in Electronics Becomes environmentally viable 2012+, Berlin, 2012, p. 28.
[9]. D. S. Achilias in Material Recycling—Trends and Perspectives (Ed.: D. S. Achilias), Intech, 2012, p. 406.
[10]. Dobry, F. Boyer-Kawenoki, J. Polym. Sci. 1947, 2, 90–100.
[11]. J. Hopewell, R. Dvorak, E. Kosior, Philos. Trans. R. Soc. London Ser. B 2009, 364, 2115–2126.
[12]. Arvanitoyannis, L. Bosnea, Food Rev. Int. 2001, 17, 291 – 346.
[13]. Brems, J. Baeyens, R. Dewil, Therm. Sci. 2012, 16, 669 – 685.
[14]. Vermeulen, J. V. Caneghem, C. Square, J. Baeyens, C. Vandecasteele, J. Danger. Mater. 2011, 190, 8–27.
[15]. W. Yang, Q. Dong, S. Liu, H. Xie, L. Liu, J. Li, Proc. Environ. Sci. 2012, 16, 167 – 175.
[16]. Wei, C.; Esposito, D.; Tauer, K. Warm properties of thermoplastic polymers: Influence of polymer structure what's more, method of radical polymerization. Polym. Degrad. Wound. 2016, 131, 157–168. [CrossRef]
[17]. Michler, G.H.; Balta-Calleja, F.J. Mechanical Properties of Polymers Based on Nanostructure and Morphology; CRC Press: Roca Raton, FL, USA, 2016; Volume 71.
[18]. Kolek, Z. Reused polymers from nourishment bundling in connection to natural security. Pol. J. Environ. Stud. 2001, 10, 73–76.
[19]. Jiun, Y.L.; Tze, C.T.; Moosa, U.; Mou'ad, A.T. Impacts of Recycling Cycle on Used Thermoplastic Polymer and Thermoplastic Elastomer Polymer. Polym. Polym. Compos. 2016, 24, 735.
[20]. Hopewell, J.; Dvorak, R.; Kosior, E. Plastics reusing: Challenges and openings. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2115–2126. [CrossRef] [PubMed]
[21]. Drobny, J.G. Handbook of Thermoplastic Elastomers; Elsevier: Amsterdam, The Netherlands, 2014.
[22]. Rodriguez, F.; Cohen, C.; Ober, C.K.; Archer, L. Standards of Polymer Systems; CRC Press: Roca Raton, FL, USA, 2014.
[23]. Lee, S.- T.; Park, C.B. Froth Extrusion: Principles and Practice; CRC Press: Roca Raton, FL, USA, 2014.
[24]. Singed, J.R. Polymer Science and Technology; Pearson Education: London, UK, 2014.
[25]. Myshkin, N.; Pesetskii, S.; Grigoriev, A.Y. Polymer Tribology: Current State and Applications. Tribol. Ind. 2015, 37, 284–290.
[26]. Park, H.M.; Li, X.; Jin, C.Z.; Park, C.Y.; Cho, W.J.; Ha, C.S. Readiness and properties of biodegradable thermoplastic starch/mud cross breeds. Macromol. Mater. Eng. 2002, 287, 553–558. [CrossRef]
[27]. Koo, J.H. Polymer Nanocomposites: Processing, Characterization, and Applications; McGraw-Hill Professional Bar.: New York, NY, USA, 2006.
[28]. Schulz, U. Audit of present-day strategies to produce antireflective properties on thermoplastic polymers. Appl. Pick. 2006, 45, 1608–1618. [CrossRef] [PubMed]
[29]. Mishra, J.K.; Hwang, K.- J.; Ha, C.- S. Readiness, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite concerning the impact of maleic anhydride adjusted polypropylene as a compatibilizer. Polymer 2005, 46, 1995–2002. [CrossRef]
[30]. Turi, E. Warm Characterization of Polymeric Materials; Elsevier: Amsterdam, The Netherlands, 2012
|