International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 5 - Issue 5, May 2016 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Optimization Of Microwave-Assisted Extraction Of Bioactive Compounds From Anogeissus Leiocarpus Guill. & Perr. Stem Bark Using Response Surface Methodology

[Full Text]



R. K. T. Tsatsop, G. T. Djiobie, B. S. Kenmogne, K. R. Regonne, M. B. Ngassoum



Anogeissus leiocarpus, antioxidants, Microwave-Assisted Extraction, Optimal conditions



The optimal conditions of Microwave-Assisted Extraction (MAE) of antioxidants from Anogeissus leiocarpus Guill. & Perr stem bark were determined. A second-order regression for central composite design (CCD) was used to investigate the effects of four independent variables, namely extraction time (s), irradiation power (W), solvent-to-solids ratio (ml/g) and methanol concentration (%) on the responses. The second-order regression for CCD consisted of 24 experimental points and 4 replications at the central point. Data were analyzed using Statgraphics software. The optimal conditions based on combination responses were: extraction time of 83 s, irradiation power of 538 W, solvent-to-solids ratio of 16.3 ml/g and methanol concentration of 51.84% according to the analysis of response surface. These optimum conditions yielded total phenolic contents (TPC) and total flavonoid content (TFC) of 498 mg Gallic Acid Equivalent (GAE)/ gDM and 3068 µg Quercetin Equivalent (QE)/gDM, respectively, with %DPPHsc of 53.21 % and total antioxidant activity (TAA) of 96206 µg Vitamin C Equivalent (VCE)/gDM. Close agreement between experimental and predicted values was found.



[1] J. Zhao, L. C. Davis and R. Verpoorte, Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances 23 (2005) 283-333.

[2] R. Tsao and Z. Deng, Separation procedures for naturally occurring antioxidant phytochemicals. Journal of Chromatography B 812 (2004) 85-99.

[3] Y. Cai, Q. Luo, M. Sun and H. Corke, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer, Life Sciences 74 (2006) 2157-2184.

[4] M. Abdullahi, G. Mohammed, N.U. Abubakar, Medicinal and economic plants of Nupe land. Jube-Evans Publishers. First ed., (2003) pp. 56-66.

[5] L. Wang, and C. L. Weller, Recent advances in extraction of nutraceuticals from plants, Trends Food Sci. Technol. 17 (2006) 300–312.

[6] M. Markom, M. Hasan, W. R. W. Daud, H. Singh, J. M. Jahim, Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: effects of solvents and extraction methods, Sep. Purif. Technol, 52 (2007) 487–496.

[7] S. Martins, C. N. Aguilar, I. de la Garza-Rodriguez, S. I. Mussatto, J. A. Teixeira, Kinetic study of nordihydroguaiaretic acid recovery from Larrea tridentata by microwave-assisted extraction, J. Chem. Technol. Biotechnol. 85 (2010) 1142–1147.

[8] X. Bai, A. Qiu and J. Guan, Optimization of Microwave-Assisted Extraction of Antihepatotoxic Triterpenoid from Actinidia deliciosa Root and Its Comparison with Conventional Extraction Methods. Food Technol Biotechnol. 45 (2) (2007) 174–180.

[9] M. Pinelo, A. G. Tress, M. Pedersen, A. Arnous, A. S. Meyer, Effect of cellulases, solvent type and particle size distribution on the extraction of chlorogenic acid and other phenols from spent coffee grounds, Am. J. Food Technol. 2 (2007) 641–651.

[10] E. Kiassos, Mylonaki, S. D. P. Makris and P. Kefalas, Implementation of response surface methodology to optimise extraction of onion (Alliumcepa) solid waste phenolics. Innovative Food Science and Emerging Technologies 10 (2009) 246–252.

[11] Chee-Yuen Gan, A. A. Latiff, Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chemistry 124 (2011) 1277–1283.

[12] S. I. Mussatto, L. F. Ballesteros, S. Martins, J. A. Teixeira, Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology 83 (2011) 173–179.

[13] V. L. Singleton, J. A. Rossi Jr, Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents, Am. J. Enol.Vitic.16 (1965) 144–158.

[14] F. W. Nana, A. Hilou, J. F. Millogo and O. G. Nacoulma, Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts. 5 (2012) 613-628; doi: 10.3390/ph5060613.

[15] P. Prieto, M. Pineda and M. Aguilar, Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex : specific application to the determination of Vitamin E, Analytical Biochemistry, 269 (1999) 337-341.

[16] L. Liu, Y. Sun, T. Laura, X. Liang, H. Ye and X. Zeng, Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng. Food Chemistry, 112 (2009) 35–41.

[17] D. R. Pompeu, E. M. Silva and H. Rogez, Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpeoleracea using response surface methodology. BioresourceTechnology,100 (2009) 6067–6082.

[18] C. Atkinson and A. N. Doney, Optimum experimental designs. (1992) Oxford: Oxford University Press.

[19] T. Karabegovic´, S. S. Stojicˇevic´, D. T. Velicˇkovic´, Nada Cˇ. Nikolic´, M. L. Lazic´, Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Separation and Purification Technology, 120 (2013) 429–436.

[20] Zhang, R. Yang, C.Z. Liu, Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb, Sep. Purif. Technol. 62 (2008) 480–483.

[21] Hayat, S. Hussain, S. Abbas, U. Farooq, B. Ding, S. Xia, C. Jia, X. Zhang, W. Xia. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Separation and Purification Technology, 70 (2009) 63–70.

[22] Y. Chen, M. Y. Xie, Xiao-Feng Gong, Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. Journal of Food Engineering, 80 (2007) 162-172.

[23] N. K. Prasad, Y. Chun, Y. En, M. Zhao and Y. Jiang, Effects of high pressure on the extraction yield, total phenolic content and antioxidant activity of long an fruit pericarp. Innovative Food Science and Emerging Technologies, 10 (2009) 155–159.

[24] X. Zheng, X. Wang, Y. Lan, J. Shi, S. J. Xue, C. Liu. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds. Separation and Purification Technology, 70 (2009) 34–40.

[25] R. Chirinos, H. Rogez, D. Campos, R. Pedreschi, Y. Larondelle, Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers, Sep. Purif. Technol. 55 (2007) 217–225.

[26] N. G. T. Meneses, S. Martins, J. A. Teixeira, S. I. Mussatto, Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology 108 (2013) 152–158.

[27] N. Prasad, A. H. Fouad, Y. Bao, W. K. Kin, N. R. Ramakrishnan, A. Azrina, A. Ismail, Response surface optimization for the extraction of phenolic compounds and antioxidant capacities of underutilised Mangifera pajang Kosterm. Peels. Food Chemistry 128 (2011) 1121–1127.