IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 6, June 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Perspectives Of Bioplastics- A Review

[Full Text]

 

AUTHOR(S)

Kokila Muniyandi, Ganesh Punamalai *, Parkavi Sachithanantham, Nandhini Chardrasekaran, Yoganathan Kamaraj

 

KEYWORDS

bioplastics, Microorganisms, Polyhydroxyalkanoate, Polyhydroxybutyrate, biodegradability,

 

ABSTRACT

Polyhydroxybutyrate (PHB) is a thermoplastic easily degradable by the action of microorganisms. A large amount of non-degradable plastics wastages are causing Environmental biggest problems. These plastics are the availability of in some markets and it’s very dangerous to the environment. The non-degradable plastics are solid wastes, greenhouse gas, carbon dioxide, different air contaminations, dangerous dioxins, and polycyclic aromatic hydrocarbon are discharged to the environment it causes extreme damage and harmful to the occupants. The finding of alternate for the problem causing non-biodegradable plastics is needed to protect our environment. Therefore, the easily degradable bioplastics gained attention in the environmental research community. Biodegradable bioplastics are generally publicized in the public and the demand for a package is quickly expanding among the retails and food industry at large scales. This review highlights every one point are regarding the applications, types, production, sustainability, challenges, and fermentation process advancement and uses of modest substrates for the production of bioplastics. Microbial production of bioplastics with assorted structures is entering another developing phase. It views the author that is bio-degradable plastic materials are generally adept for single uses of disposable applications are post utilization wastes can be privately treated the soil.

 

REFERENCES

[1] Lichtenthaler and W. Frieder, "Carbohydrates as Organic Raw Materials". Ullmann's Encyclopedia of Industrial Chemistry, 2010.doi:10.1002/14356007.n05_n07. ISBN 978-3-527-30673 2.
[2] S.K. Khanna, and A.K. Srivastava, Biochem Biotechnol. 395-9, 2009. http://dx.doiorg/10.s12010-008.
[3] S. Mukherjee, and S. Chatterjee, Int J CurrMicrobiol App Sci. 3(5), 318-325, 2014.
[4] M.B. Galia, “Isolation and analysis of storage compounds” In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin: Springer; p. 3725–41, 2010.
[5] J.T. Pfeffer, Solid Waste Management Eng.,72, 1992.
[6] Y.B. Kim, and R.W. Lenz, “Polyesters from microorganisms. In: Babel, W., Steinbuchel”, A. (Eds.), Advances in Biochemical Engineering Biotechnology, 2000.
[7] K. Tanaka, A. Ishizaki, T. Kanamaru, T. Kawano, “Production of poly(D-3-hydroxybutyrate) from CO2, H2, and O2 by high cell density autotrophic cultivation of Alcaligenes eutrophus” Biotechnol. Bioeng. 45 (3), 268–275, 1995.
[8] A. Ishizaki, K. Tanaka, “Production of poly-β-hydroxybutyric acid from carbondioxide by Alcaligeneseutrophus ATCC 17697T”. J. Ferment. Bioeng. 71 (4),254–257, 1991.
[9] Luzier, W.D., 1992. Materials derived from biomass biodegradable materials. Proceedings of theNational Academy of Sciences of the United States of America 89: 839-842.
[10] S.Y. Lee, “Bacterial polyhydroxyalkanoates”. Biotechnol. &Bioeng. 49,1-14, 1996b .
[11] B.S. Kim, H.N. Chang, “Production of poly (3-hydroxybutyrate) from starch by Azontobactoerchroococcum”. Biotechnol. Letters, 20(2), 109-112,1998.
[12] M. Aragno, H.G. Schlegel, “The mesophilic hydrogen-oxidizing (knallgas) bacteria. in The Prokaryotes” (eds. Balows, A., Truper, H.G., Dworkin, M., Harder, W. &Schleifer,K.-H.) 344–384, 1992. (Springer-Verlag, New York, NY).
[13] S.Y. Lee, Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotech-nol. 14, 431-438, 1996a.
[14] S.Y. Lee and H.N. Chang, “Production of poly-(hydroxyalkanoicacid) Adv” BiochemEng Biotechnol. 52, 27-58, 1995a.
[15] N.D. Ayub, M.J. Pettinari, J.A. Ruiz, N.I. Lopez, “A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance”. Curr Microbiol.49, 170-4, 2004.
[16] N.I. Lopez, M.J. Pettinari, E, Stackerbrandt, P.M. Tribelli, M. Potter, A. Steinbuchel, “Pseudomonas extremaustralissp. nov., a poly(3-hydroxybutyrate) producer isolated from an Antarctic environment”. CurrMicrobiol. 9, 514–9, 2005.
[17] Francesco Pappalardo, Manuela Fragala, G. Placido, Arcangelo Damigella, “Production of filmable medium- chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterranea” 65, 89-96, 2014.
[18] E.L. JehanMohmed, Mohamedy Hawas, Tarek EI-said EI- Banna., Elsayed Belal Adelmonteleb Belal, “Production of Bioplastic from some selected bacterial strains” 5(1), 10-22, 2016.
[19] S. Kumaravel, R. Hema, R. Lakshmi, “Production of Polyhydroxybutyrate (Bioplastic) and its Biodegrdation by Pseudomonas Lemoignei and Aspergillus Niger” 7(S1), S536-S542, 2010.
[20] Make Potato Plastic!. Instructables.com (2007-07-26). Retrieved on 2011-08-14.
[21] Avérous, Luc, Pollet, Eric, "Nanobiocomposites Based on Plasticized Starch", Starch Polymers,Elsevier,pp. 211–239,2014. doi:10.1016/b978-0-444-53730-0.00022,ISBN 9780444537300.
[22] "Starch can replace normal plastic in food packaging". Phys.Org. 12 June 2018. Archived from the original on 2018-12-14. Retrieved 12-14, 2018.
[23] Sherman, Lilli Manolis, "Enhancing biopolymers: additives are needed for toughness, heat resistance &processability". Plastics Technology. Archived from the original on 17 April 2016.
[24] Averous, L., Pollet, E., 2012. Environmental Silicate Nano-Biocomposites - Green Energy and Technology. Springer-Verlag, London, pp 1-28.
[25] N.A. Song, Hou Xingshuang, L.I, Chen, Cui Siqi, Shi, Liyi, Ding, Peng, "A Green Plastic Constructed from Cellulose and Functionalized Graphene with High Thermal Conductivity". ACS Applied Materials &Interfaces. 9 (21),17914–17922, 2017.doi:10.1021/acsami. 7b02675. ISSN 1944-8244. PMID 28467836.
[26] J.H. Song, R.J. Murphy, R. Narayan, G.B.H. Davies, "Biodegradable and compostable alternatives to conventional plastics". Philosophical Transactions of the Royal Society B:Biological Sciences. 364 (1526),2127 –2139, 2009.doi: 10.1098 /rstb . 2008. 0289.ISSN 0962-8436. PMC 2873018. PMID 19528060.
[27] Zhang, Jinwen, Jiang, Long, Zhu, Linyong, Jane, Jay-lin, Mungara, Perminus, "Morphology and Properties of Soy Protein and Polylactide Blends". Biomacromolecules. 7 (5),1551–1561, 2006. doi: 10.1021/ bm050 888 p. ISSN 1525-7797. PMID 16677038.
[28] Mirel, “PHAs grades for Rigid Sheet and Thermoforming”. Retrieved on 01-14, 2016. fromhttps://bioplastique.wordpress.com.
[29] Retrieved on 01-14, 2016. from www.dsm.com.
[30] D.J. Fortman, J.P. Brutman, C.J. Cramer, M.A. Hillmyer, W.R. Dichtel, JACS 137 (44), 14019–14022, 2015.
[31] R.M. Yates, C.Y. Barlow, “Resources, Conservation and Recycling” 78, 54- 66, 2013.
[32] Bassam Nohar, Laure candy, Jean- Francis Blanco, celin Guerin, yann Raoul and zephirin mouloungii, “From petrochemical polyurethanes to biobased Polyhydroxyurethanes”, 46, 3771-3792, 2013.
[33] J. Fortman, David P. Jacob, Brutman, J. Christopher, Cramer, A. Marc, Hillmyer, R. William, Dichtel, "Mechanically Activated, Catalyst-Free PolyhydroxyurethaneVitrimers". Journalof the American Chemical Society. 137 (44),14019–1402, 2015. doi:10.1021/jacs.5b08084. PMID 26495769.
[34] P.J. Hocking, and R.H. Marchessault, “Biopolyesters. In Chemistry and Technology of Biodegradable Polymers”. Edited by Griffin GJL. Blackie Academic & Professional; 1994:48-96, 1997.
[35] Weiner RM: Biopolymers from marine prokaryotes. Tibtech 15, 390-427.
[36] M.A.K.M. Zahari, “Production of polyhydroxyalkanoate from oil palm fronds. Bioplastic” Research Group; report number 93, 2011.
[37] Maja RujnicSokele, Ana Pilipovic, Challenges and opportunities of biodegradable plastics: A mini-review. 35(2), 132-140, 2017.
[38] J.G. Wang, L.R. Bakken, “Screening of soil bacteria for polybetahydroxybutyric acid production and its role in the survival of starvation. Microbial”. Ecol. 35, 94-101, 1998.
[39] European Bioplastics., Bioplastics FAQ Available at:http:// www. Truegreen . in/media/scientific%20archives/Bioplastics%20FAQ.pdf (accessed 1 September 2015).
[40] D. Jendrossek, R. Handrick, “Microbial degradation of polyhydroxyalkanoates”. Annual. Rev. Microbiol. 56, 403-432, 2002.
[41] Y. Poirier, “Green chemistry yields a better plastic”. Nat. Biotechnol. 17, 960- 961, 1999.
[42] F. Masood, T. Yasin, A. Hameed, “Comparative oxo-biodegradation study of poly-3-hydroxybutyrate-co-3-hydroxy valerate/polypropylene blend in controlled environments”. Int. Biodeterior. Bodega. 87, 1–8, 2014. http:// dx.doi. org/ 10.1016/ j.ibiod. 2013.09.023.
[43] A. Padermshoke, Y. Katsumoto, H. Sato, S. Ekgasit, I. Noda, Y. Ozaki, Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlationspectroscopy. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 61, 541–550, 2005. http://dx.doi.org/10.1016/j.saa.2004.05.004.
[44] E. Bugnicourt, P. Cinelli, A. Lazzeri, V. Alvarez, Polyhydroxyalkanoate( PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 8, 791–808, 2014. http://dx.doi.org/10. 3144/ express polymlett.2014.82.
[45] S. Omar, A. Rayes, A. Eqaab, I. Voβ, A. Steinbuchel, Optimization of cell growth and poly(3-hydroxybutyrate) accumulation on date syrup by a bacillus megaterium strain. Biotechnology Letters 23:1119-1123, 2001.
[46] B. Zhang, R. Carlson, F. Srienc, “Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae”. Appl. Environ. Microbiol.72, 536–543, 2006. http://dx.doi.org/10.1128/AEM.72.1.536-543.2006.
[47] B. Kunasundari, K. Sudesh, “Isolation and recovery of microbial polyhydroxyalkanoates”. Express Polym. Lett. 5, 620–634, 2011. http://dx.doi. org/ 10.3144/expresspolymlett, 60.
[48] S. Taguchi, Y. Doi, Macromol, Biosci. 4, 145–156, 2004.
[49] J. Yu, H. Stahl, Bioresour. Technol. 99, 8042–8048, 2008.
[50] S. Khanna, A,K. Srivastava, Process Biochem. 40, 607–619, 2005.
[51] L.R. Castilho, D.A. Mitchell, D.M.G. Freire, Bioresour., Technol. 100, 5996–6009, 2009.
[52] M. Akiyama, Y. Taima,Y. Doi, Appl. Microbiol. Biotechnol. 37, 698–701, 1992.
[53] T. Fukui, T. Kichise, Y.Yoshida, Y. Doi, Biotechnol. Lett. 19, 1093–1097, 1997.
[54] P. Yu, H. Chua, A.L. Huang, K.P. Ho, “Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates”. Applied Biochemistry and Biotechnology 78:445-454, 1999.
[55] W. Suwannasing, T. Imai, T. Kaewkannetra, “Bioresour”. Technol. 194, 67–74, 2015.
[56] G.G. Fonseca, R.V. Antonio, “Polyhydroxyalkanoates production by recombinant Escherichia coli harboring the structural genes of the polyhydroxyalkanoate synthases of Ralstonia eutropha and Pseudomonas aeruginosa using low cost substrate”. Journal of Applied Sciences 6:1745-1750, 2006.
[57] S. Marsudi, H. Unno, K. Hori, “Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa”. Applied Microbiology and Biotechnology 78:955-961, 2008.
[58] S.V. Reddy, M. Thirumala, S.K. Mahmood, J. Ind, Microb. Biotechnol. 36, 837–843, 2009.
[59] Cavalheiro JMBT, de Almeida MCMD, C. Grandfils, da Fonseca MMR, “Poly(3-hydroxybutyrate) production by Cupriavidusnecatorusing waste glycerol”. Process Biochemistry 44:509-515, 2009.
[60] C. Simon-Colin, G. Raguenes , P. Crassous , X. Moppert , J.A, Guezennec, “Novel mcl-PHA produced on coprah oil by Pseudomonasguezenneibiovar. tikehau, isolated from a "kopara" mat of French Polynesia”. International Journal of BiologicalMacromolecules, 43:176-181, 2008.
[61] M.R. Lopez-Cuellar, J. Alba-Flores, J.N.G. Rodriguez, F. Perez-Guevara, Int. J.Biol. Macromol. 48, 74–80, 2011.
[62] K.M. Tobin, and K.E. O’Connor, Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilizing aromatic hydrocarbons. FEMS Microbiol Lett 253, 111–118, 2005.
[63] R. Hartmann, R. Hany, E, Pletscher, A, Ritter, B. Witholt, and M. Zinn,. Tailor-made olefinic medium-chainlengthpoly[(R)-3-hydroxyalkanoates] by Pseudomonas putida GPo1: Batch versus chemostat production. BiotechnolBioeng 93, 737–746, 2006.
[64] R. Durner, B. Witholt, and T. Egli, “Accumulation of Poly[(R)-3-Hydroxyalkanoates] in Pseudomonas oleovorans during growth with Octanoate in continuous culture at different dilution rates”. Appl Environ Microbiol 66, 3408– 3414, 2000.
[65] L.J.R. Foster, V. Sanguanchaipaiwong, C.L. Gabelish, J. Hook, J. and M. Stenzel, “A natural-synthetic hybrid copolymer of polyhydroxyoctanoate-diethylene glycol: biosynthesis and properties”. Polymer 46, 6587–6594, 2005.
[66] L.H. Mahishi, G. Tripathi, and S.K. Rawal, “Poly(3-hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli harbouring Streptomyces aureofaciens PHB biosynthesis genes” Effect of various carbon and nitrogen sources Microbiol Res 158, 19–27, 2003.
[67] P. Kahar, J. Agus, Y. Kikkawa, K. Taguchi, Y. Doi, and T. Tsuge, “Effective production and kinetic characterization of ultra-high-molecular-weight poly (R)- 3-hydroxybutyrate in recombinant Escherichia coli”. PolymDegrad Stab 87, 161–169, 2005.
[68] S.J. Park, J.I. Choi, and S.Y. Lee, “Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates”. Enzyme MicrobTechnol 36, 579– 588, 2005a.
[69] S. Labuzek, and I. Radecka, “Biosynthesis of copolymers of PHB tercopolymer by Bacillus cereus UW85 strain”. JApplMicrobiol 90, 353–357, 2001.
[70] M. Yilmaz, and Y. Beyatli, “Poly-beta-hydroxybutyrate (PHB) production by a Bacillus cereus M5 strain in sugarbeet molasses”. Zuckerindustrie 130, 109–112, 2005.
[71] S.P. Valappil, D. Peiris, G.J. Langley, J.M. Herniman, A.R. Boccaccini, C. Bucke, and I. Roy, “Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp”. J Biotechnol 127, 475–487, 2007.
[72] N. Hoffmann, and B.H.A. Rehm, “Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa”. FEMS MicrobiolLett 237, 1–7, 2004.
[73] D. Fernandez, E. Rodrigue´z, M. Bassas, M. Vin˜as, A.M. Solanas, J. Llorens, A.M. Marque´s, et al, “Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: Effect of culture conditions”. BiochemEng J 26, 159–167, 2005.
[74] M. Mukhopadhyay, A. Patra, and A.K. Paul, “Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate- co-3-hydroxyvalerate) by Rhodo pseudomonas palustris SP5212. World J MicrobiolBiotechnol 21, 765–769, 2005.
[75] C.Y. Loo,W.H. Lee, T. Tsuge,Y. Doi, K. Sudesh, Biotechnol. Lett. 27,1405–1410, 2005.
[76] Y. Poirier, C. Nawrath, C. Somerville, Biotechnology 13, 142–150, 1995.
[77] G. Du, J. Chen, J. Yu, S. Lun, Biotechnol. 88, 59–65, 2001.
[78] B.S, Kim, S.C. Lee, S.Y, Lee, H.N. Chang, Y,K. Chang, S.I. Woo, “Production of poly-(3-hydroxybutyric-co-3-hydroxyvaleric ac- id) by fed-batch culture of Alcaligenes eutrophus with substrate feeding using on-line glucose analyzer”. Enzyme MicrobTechnol 16: 556±561, 1994b.
[79] J. Yu, “Microbial production of bioplastics from renewable resources. In: Bioprocessing for Value-Added Products from Renewable Resources”, Yang ST (ed). Elservier BV, Amsterdam, pp. 585–610, 2007.
[80] M.G.E. Albuquerque, M. Eiroa, C. Torres, B.R. Nunes, M.A.M. Reis,. “Strategies for the development ofa side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses”. Journal of Biotechnology 130, 411-421, 2007
[81] P. Schubert, A. Steinbüchel, H.G. Schlegel, “Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli”. Journal of Bacteriology 170, 5837-5847, 1988.
[82] C.S.K. Reddy, R.G. Rashmi, V.C. Kalia, “ Polyhydroxyalkanoates - an overview”. Bioresource Technology 87, 137-146, 2003.
[83] Satish kumar, and K.S., Thakur, “Bioplastics classification, Production and their potential food applications”. 8(2), 118-129, 2017.
[84] M.M. Reddy, S. Vivekanandhan, M. Misra, S.K. Bhatia,A.K. Mohanty, “Biobased plastics and bionanocomposites” Current status and future opportunities. Prog. Polym. Sci.38, 1653–1689, 2013. [CrossRef]
[85] European Bioplastics. What are Bioplastics? Available online: https://www. European -bioplastics.org/ bioplastics/ (accessed on 15 April 2020).
[86] T. Narancic, S. Verstichel, S. Reddy Chaganti, L. Morales-Gamez, S.T. Kenny, B. De Wilde, R. Babu Padamati, K.E. O’Connor, “Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution”. Environ. Sci. Technol. 52, 10441–10452, 2018.[CrossRef].
[87] R.J. Muller, “Biodegradability of polymers: regulations and methods for testing, in: A. Steinbu¨ chel (Ed.)”, Biopolymers Online, Wiley–VCH Verlag GmbH & Co. KGaA, 10, pp. 379–384, 2005 (Chapter 12). www.wileyvch. de/ books/ bio poly/pdf_v10 / vol10_19.pd
[88] R. Boopathy, “Factor limiting bioremediation technologies”. Bioresource. Technol. 74, 63-67, 2000.
[89] A. Flechter, “In: Plastics from Bacteria and for Bacteria: PHA as Natural, Biodegradable Polyesters”. Springer Verlag, New York.77-93, 1993.
[90] S. Balaji, K. Gopi, B. Muthuvelan,B, Algal Res. 2, 278–285, 2013.