International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 9 - Issue 6, June 2020 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Study the Effect of Different Media Flow Speed using Computational Simulation of AFM for two Dimensional Models

[Full Text]



Atul Singh Pathania, Sushil Mittal, Arun Kumar



Abrasives, AFM, Axisymmetric, CFD, MRR, Multiphase model, Surface roughness.



Abrasive Flow machining (AFM) also called Abrasive machining process which helps in achieving high level of surface finish and material removal rate from internal complex workpiece geometries after the machining operation. Concentration of abrasive, Abrasive size, extrusion pressure, media flow rate, number of strokes, media viscosity, strain rate and velocity are the factors which affect quality surface finish and MRR. Mathematical modelling, experimental results and computational simulation helps in improving the performance of Abrasive flow machining. This paper focuses mathematical model and computational simulation for the internal surface irregularities and effect of parameters with different media flow velocity. Computational Fluid dynamics (CFD) simulation was executed using commercial codes software available ANSYS FLUENT. CFD used numerical and algorithms methods (discrete counterparts of the governing equation) to analysis and get solution to the fluid flow problem. The fluid is assumed to be Newtonian fluid and type of flow should be steady, laminar and incompressible. Fluent Multiphase Mixture model for two phases was taken in account with secondary phase as continuous. The base media consist of Silly putty (Polyborosiloxane) and Silicon Carbide for the analysis.



[1] “Extrudehoneafm.Com, Accessed 2015/7/10.”
[2] Y. D. W. Rhoades L.J., Kohut T.A./, Nokovich N.P., “Unidirectional abrasive flow machining,” Met. Finish., vol. 93, no. 6, p. 155, 1995, doi: 10.1016/0026-0576(95)94768-x.
[3] L. J. Rhoades and T. A. Kohut, “Reversible Unidirectional AFM,” 1991.
[4] R. Lawrence J., “Orbital and/or Reciprocal Machining with a Viscous Plastic Medium,” 1990.
[5] I. T. Im, S. D. Mun, and S. M. Oh, “Micro machining of an STS 304 bar by magnetic abrasive finishing,” J. Mech. Sci. Technol., vol. 23, no. 7, pp. 1982–1988, 2009, doi: 10.1007/s12206-009-0524-z.
[6] V. K. Gorana . V. K. Jain . G. K. Lal, “Prediction of surface roughness during abrasive flow machining, Int J Adv Manuf Technol.”
[7] J. W. E.Uhlmann, C.Schmicdel, “CFD simulation of the abrasiv flow machining process,” pp. 207–214, 2015.
[8] R. Butola, R. Jain, P. Bhangadia, A. Bandhu, R. S. Walia, and Q. Murtaza, “Optimization to the parameters of abrasive flow machining by Taguchi method,” Mater. Today Proc., vol. 5, no. 2, pp. 4720–4729, 2018, doi: 10.1016/j.matpr.2017.12.044.
[9] P. Ali, S. Dhull, R. S. Walia, Q. Murtaza, and M. Tyagi, “ScienceDirect Hybrid Abrasive Flow Machining for Nano Finishing - A Review,” Mater. Today Proc., vol. 4, no. 8, pp. 7208–7218, 2017, doi: 10.1016/j.matpr.2017.07.048.
[10] V.K.Jain and S.G.Adsul, “Experimental investigations into abrasive flow machining (AFM), International Journal of Machine Tools & Manufacture,.”
[11] G. Venkatesh, A. K. Sharma, N. Singh, and P. Kumar, “Finishing of bevel gears using abrasive flow machining,” Procedia Eng., vol. 97, pp. 320–328, 2014, doi: 10.1016/j.proeng.2014.12.255.
[12] P. Pal and K. K. Jain, “Computational Simulation of Abrasive Flow Machining for Two Dimensional Models,” Mater. Today Proc., vol. 5, no. 5, pp. 12969–12983, 2018, doi: 10.1016/j.matpr.2018.02.282.
[13] R. S. Mulik and P. M. Pandey, “Experimental investigations and modeling of finishing force and torque in ultrasonic assisted magnetic abrasive finishing,” J. Manuf. Sci. Eng. Trans. ASME, vol. 134, no. 5, pp. 1–9, 2012, doi: 10.1115/1.4007131.
[14] R. K. Singh, D. K. Singh, and S. Gangwar, “Advances in Magnetic Abrasive Finishing for Futuristic Requirements - A Review,” Mater. Today Proc., vol. 5, no. 9, pp. 20455–20463, 2018, doi: 10.1016/j.matpr.2018.06.422.
[15] M. Syamlal, W. Rogers, and T. . O’Brien, “MFIX Documentation,” Natl. Tech. Inf. Serv., vol. 1, 1993, doi: METC-9411004, NTIS/DE9400087.
[16] R. K. Jain, V. K. Jain, and P. M. Dixit, “Modeling of material removal and surface roughness in abrasive flow machining process,” Int. J. Mach. Tools Manuf., vol. 39, no. 12, pp. 1903–1923, 1999, doi: 10.1016/S0890-6955(99)00038-3.
[17] S. Singh, M. R. Sankar, V. K. Jain, J. Ramkumar, M. Engineering, and I. I. T. Guwahati, “Modeling of Finishing Forces and Surface Roughness in Abrasive Flow Finishing ( AFF ) Process using Rheological Properties,” no. Aimtdr, pp. 2–7, 2014.
[18] M. Sushil, K. Vinod, and K. Harmesh, “Multi-objective optimization of process parameters involved in micro-finishing of Al/SiC MMCs by abrasive flow machining process,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 232, no. 4, pp. 319–332, 2018, doi: 10.1177/1464420715627292.
[19] J. Li et al., “Design and simulation for mico-hole abrasive flow machining,” Proceeding 2009 IEEE 10th Int. Conf. Comput. Ind. Des. Concept. Des. E-Business, Creat. Des. Manuf. - CAID CD’2009, pp. 815–820, 2009, doi: 10.1109/CAIDCD.2009.5374887.
[20] V. K. Jain and S. G. Adsul, “Experimental investigations into abrasive flow machining (AFM),” Int. J. Mach. Tools Manuf., vol. 40, no. 7, pp. 1003–1021, 2000, doi: 10.1016/S0890-6955(99)00114-5.
[21] R. K. Jain, V. K. Jain, and P. K. Kalra, “Modelling of abrasive flow machining process: A neural network approach,” Wear, vol. 231, no. 2, pp. 242–248, 1999, doi: 10.1016/S0043-1648(99)00129-5.
[22] R. S. Walia, H. S. Shan, and P. Kumar, “Enhancing AFM process productivity through improved fixturing,” Int. J. Adv. Manuf. Technol., vol. 44, no. 7–8, pp. 700–709, 2009, doi: 10.1007/s00170-008-1893-7.
[23] K. T. Subramanian, N. Balashanmugam, and P. V. Shashi Kumar, “Nanometric Finishing on Biomedical Implants by Abrasive Flow Finishing,” J. Inst. Eng. Ser. C, vol. 97, no. 1, pp. 55–61, 2016, doi: 10.1007/s40032-015-0190-0.
[24] B. Tang, S. Ji, and D. Tan, “Structural surface of mould softness abrasive flow precision polishing machining method based on VOF,” Proc. - Int. Conf. Electr. Control Eng. ICECE 2010, pp. 2001–2005, 2010, doi: 10.1109/iCECE.2010.492.