International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 9 - Issue 6, June 2020 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Hyperspectral Image Compression Using Hybrid Transform With Embedded Zero-Tree Wavelet And Set Partitioning In Hierarchical Tree

[Full Text]



Ranganathan Nagendran, Arumugam Vasuki



Hyperspectral image; embedded zero-tree wavelet (EZW); set partitioning in hierarchical tree (SPIHT); integer Karhunen–Loève transform; integer discrete wavelet transform.



Hyperspectral images are three-dimensional representations comprising spatial and spectral dimensions. Hence, these images contain a huge volume of data, and compression is required for their efficient transmission, storage, and processing. We propose a hyperspectral image compression technique using a hybrid transform. Specifically, the integer Karhunen–Loève transform with clustering and tiling is applied to the spectral dimension to decorrelate the corresponding data. Then, the 2D integer discrete wavelet transform is applied over the spatial dimension to decorrelate the spatial data. In addition, the decorrelated wavelet coefficients are applied in the embedded zero-tree wavelet transform. Alternatively, the data are processed by an algorithm containing set partitioning in hierarchical tree. The wavelet transform and partitioning on the hybrid transform over hyperspectral images retrieve high peak signal-to-noise ratio, low number of bits per pixel per band, and fast computation time compared to similar approaches, with the partitioning showing the best results.



[1] AVIRIS—Airborne Visible/Infrared Imaging Spectrometer (https://aviris.jpl.nasa.gov/).
[2] Roger, R.E., & Cavenor, M.C, “Lossless compression of AVIRIS images,” IEEE Transactions on Image Processing, 5(5), 713–719, 1996, doi: 10.1109/83.495955
[3] Aiazzi, B, Alba, P., Alparone, L., & Baronti, S, “Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction,” IEEE Transactions on Geoscience and Remote Sensing, 37(5), 2287–2294. 1999, doi: 10.1109/36.789625
[4] Wu, X., & Memon, N, “Context-based, adaptive, lossless image coding,” IEEE Transactions on Communications, 45(4), 437–444. 1997, doi: 10.1109/26.585919
[5] Wu, X., & Memon, N, “Context-based lossless interband compression-extending CALIC,” IEEE Transactions on Image Processing, 9(6), 994–1001, 2000,. doi: 10.1109/83.846242
[6] Sayood, K, “Introduction to data compression,” Cambridge, MA: Morgan Kaufmann, p. 680, 2006.
[7] Ryan, M.J., & Arnold, J.F, “The lossless compression of AVIRIS images by vector quantization,” IEEE Transactions on Geoscience and Remote Sensing, 35(3), 546–550, 1997 doi: 10.1109/36.581964
[8] da Silva, E.A., Sampson, D.G., & Ghanbari, M, “A successive approximation vector quantizer for wavelet transform image coding,” IEEE Transactions on Image Processing, 5(2), 299–310, 1996, doi: 10.1109/83.480765
[9] Knipe, J., Li, X., & Han, B, “An improved lattice vector quantization scheme for wavelet compression,” IEEE Transactions on Signal Processing, 46(1), 239–243, 1998, doi: 10.1109/78.651227
[10] Chao, C.C., & Gray, R.M, “Image compression with a vector speck algorithm,” Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France. doi: 10.1109/ICASSP.2006.1660375
[11] Penna, B., Tillo, T., Magli, E., & Olmo, G, “Embedded lossy to lossless compression of hyperspectral images using JPEG 2000,” Proceedings IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005,doi: 10.1109/IGARSS.2005.1526124
[12] Shapiro, J.M, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Transactions on Signal Processing, 41(12), 3445–3462, 1993,. doi: 10.1109/78.258085
[13] Bilgin, A., Zweig, G., & Marcellin, M. W, “Three-dimensional image compression with integer wavelet transform,” Applied Optics, 39(11), 1799–1814, 2000, doi: 10.1364/AO.39.001799
[14] Kim, B.J., Xiong, Z., & Pearlman, W.A, “Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT),” IEEE Transactions on Circuits and Systems for Video Technology, 10(8), 1374–1387, 2000, doi: 10.1109/76.889025
[15] Cheng, K.J., & Dill, J.C, “An improved EZW hyperspectral image compression”. Journal of Computer and Communications, 2(2), 31–36, 2014, doi: 10.4236/jcc.2014.22006
[16] Penna, B., Tillo, T., Magli, E., & Olmo, G, “Transform coding techniques for lossy hyperspectral data compression,” IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1408–1421, 2007, doi: 10.1109/TGRS.2007.894565
[17] Gerbrands, J.J, “On the relationships between SVD, KLT and PCA,”. Pattern Recognition, 14(1–6), 375–381, 1981, doi: 10.1016/0031-3203(81)90082-0
[18] Blanes, I., & Serra-Sagristà, J. (2010). Cost and scalability improvements to the Karhunen–Loêve transform for remote-sensing image coding. IEEE Transactions on Geoscience and Remote Sensing, 48(7), 2854–2863, 2010, doi: 10.1109/TGRS.2010.2042063
[19] Du, Q., & Fowler, J.E, “Hyperspectral image compression using JPEG2000 and principal component analysis,” IEEE Geoscience and Remote Sensing Letters, 4(2), 201–205. doi: 10.1109/LGRS.2006.888109
[20] Hao, P. & Shi, Q. (2003). Reversible integer KLT for progressive-to-lossless compression of multiple component images. Proceedings of the International Conference on Image Processing, Barcelona, Spain, pp. I-633–6, 2003, doi: 10.1109/ICIP.2003.1247041
[21] Hao, P., & Shi, Q, “Matrix factorizations for reversible integer mapping,” IEEE Transactions on Signal Processing, 49(10), 2314–2324. doi: 10.1109/78.950787
[22] Galli, L., & Salzo, S, “Lossless hyperspectral compression using KLT,” IEEE International Conference on Geoscience and Remote Sensing Symposium, Anchorage, AK, pp. 313–316, 2004, doi: 10.1109/IGARSS.2004.1369024
[23] Turing, A.M, “Rounding-off errors in matrix processes,” The Quarterly Journal of Mechanics and Applied Mathematics, 1(1), 287–308, 1948, doi: 10.1093/qjmam/1.1.287
[24] Zabalza, J., Ren, J., Yang, M., Zhang, Y., Wang, J., Marshall, S., & Han, J, “Novel folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing,” ISPRS Journal of Photogrammetry and Remote Sensing, 93, 112–122, 2014, doi: 10.1016/j.isprsjprs.2014.04.006
[25] Wang, S., & Chang, C.I, “Variable-number variable-band selection for feature characterization in hyperspectral signatures,” IEEE Transactions on Geoscience and Remote Sensing, 45(9), 2979–2992, 2007, doi: 10.1109/TGRS.2007.901051
[26] Zhao, Y.Q., Zhang, L., & Kong, S.G, “Band-subset-based clustering and fusion for hyperspectral imagery classification,” IEEE Transactions on Geoscience and Remote Sensing, 49(2), 747–756, 2011, doi: 10.1109/TGRS.2010.2059707
[27] Pang, E., Wang, S., Qu, M., Liu, R., Jia, C., & Yu, Z, “2D-SPP: a two-dimensional extension of sparsity preserving projections,” Journal of Information and Computational Science, 9(13), 3683–3692, 2012..
[28] Yu, S., Bi, J., & Ye, J, “Probabilistic interpretations and extensions for a family of 2D PCA-style algorithms,” Proceedings of the KDD Workshop on Data Mining Using Matrices and Tensors, Las Vegas, NV, 2008.
[29] Daubechies, I., & Sweldens, W, “Factoring wavelet transforms into lifting steps,” Journal of Fourier Analysis and Applications, 4(3), 247–269, 1998. doi: 10.1007/BF02476026
[30] A. Jensen and A. La Cour-Harbo, “Ripples in Mathematics : The Discrete Wavelet Transform,” New York: Springer, 2001.
[31] Said, A., & Pearlman, W.A, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243–250, 1996, doi: 10.1109/76.499834
[32] Hyperspectral remote sensing scenes (http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes)
[33] Sun, L. Hyperspectral datasets. Retrieved from http://lesun.weebly.com/hyperspectral-data-set.html.