IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 6, June 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Method Based On Challenging Flow By Competences For Tasks With High Cognitive Demand

[Full Text]

 

AUTHOR(S)

Jhon Holguin-Alvarez, Luzmila Garro-Aburto, Yrene Uribe-Hernández, Pedro Novoa-Castillo

 

KEYWORDS

Cognitive demand; Connective task; Flow; Mathematical Operations; Mathematical task; Problem resolution; Student commitment.

 

ABSTRACT

Cognitive demand in mathematics is crucial for addressing problem solving, learning geometry, statistics, and other disciplines that are exercised when students face complex tasks, which start from school to university. However, no activity developed in the classroom, based on activities anchored in emotional stages and affectivity that develops student commitment to mathematics, has been studied by educational science in this field. For this reason, the research proposed to increase the skills to develop tasks of high cognitive demand in mathematics in a sample of 335 primary school students from public and private schools in Peru. A standardized test using the correlation method and regular reliability was used. The results show high levels of approach to tasks of low connective level of information, in high-level tasks, but there are difficulties in increasing the skills to solve tasks with high cognitive demand. We conclude that tasks with high cognitive demand require more than eight months of practical experimentation, with greater diligence in developing personalized tasks as opposed to group ones. The experimental group showed that after 80 learning sessions, students manage to tackle high-demand tasks, although they need more support to formulate other problems of a similar nature as substantial evidences.

 

REFERENCES

[1] Ayllón, M. F., Gómez, I. A. & Ballesta-Claver, J. (2016). Pensamiento matemático y creatividad a través de la invención y resolución de problemas matemáticos [Mathematical thinking and creativity through inventing and solving mathematical problems]. Propósitos y representaciones, 4(1), 169-218. https://doi.org/10.20511/pyr2016.v4n1.89
[2] Benedicto, C., Jaime, A., & Gutiérrez, Á. (2015). Análisis de la demanda cognitiva de problemas de patrones geométricos [Analysis of the cognitive demand of geometric pattern problems]. En C. Fernández, M. Molina y N. Planas (Eds.), Investigación en educación matemática XIX (pp. 153-162). Alicante: Universidad de Alicante. http://rua.ua.es/dspace/handle/10045/51591
[3] Burgos, M., Giacomone, B., Beltrán-Pelliecer, P. y Godino, J. D. (2017). Reconocimiento de niveles de algebrización en una tarea de proporcionalidad por futuros profesores de matemáticas de secundaria [Recognition of levels of algebrization in a proportionality task by future high school mathematics teachers]. En J. M. Muñoz, A. Arnal, P. Beltrán, M. L. Callejo y J. Carrillo (Eds.), Investigación en Educación Matemática XXI (pp. 177-186). Zaragoza: SEIEM. https://dialnet.unirioja.es/servlet/libro?codigo=705555
[4] Dávila, K. & Trujillo, E. (2016). Rendimiento de los estudiantes de 6° grado de primaria en la prueba FAB de resolución de tareas de alta y baja demanda cognitiva referencias a fracciones [Performance of 6th grade primary students on the FAB test for solving tasks with high and low cognitive demands referring to fractions] (Tesis de maestría). Pontificia Universidad Católica del Perú, Lima, Perú.
[5] Mateus, E. (2015). Configuraciones epistémicas previas para dar significado global al objeto matemático “método de integración por partes” [Previous epistemic configurations to give global meaning to the mathematical object "integration method by parts"]. Acta Latinoamericana de Matemática Educativa, 28,145-153). https://clame.org.mx/inicio/actas/
[6] Cirino, C. (2011). Análise crítica de tarefas matemáticas: um estudo com professores que ensinam matemática nos anos iniciais do ensino fundamental [Análisis crítico de tareas matemáticas: un estudio con profesores que enseñaban matemáticas nos dio años de enseñanza fundamental] (Tesis de maestría). Universidad Estatal de Londrina, Londrina, Brasil. http://www.educadores.diaadia.pr.gov.br/modules/mydownloads_01/visit.php?cid=4&lid=7101
[7] Baroody, A. J. (2000). El pensamiento matemático de los niños. Un marco evolutivo para maestros de preescolar, ciclo inicial y educación especial [Mathematical thinking of children. An evolutionary framework for preschool, early childhood, and special education teachers]. Visor.
[8] Stein, M. K., Smith, M. S., Henningsen, M. & Silver, E. (2009). Implementing standards-based mathematics instruction. Columbia University.
[9] Godino, J.; Batanero, C.; & Font, V. (2004). Fundamentals of teaching and learning mathematics. In: Juan D. Godino (2004). Mathematics teaching for teachers, 5-123. Universidad de Granada.
[10] González, A. (2013). ¿A resolver problemas se enseña? El problema como contenido a ser enseñado de 1º a 7º [How to solve problems is taught? The problem as content to be taught from 1st to 7th]. Homo Sapiens.
[11] Aguirre-Leguizamo, E. (2016). Flexibilidad cognitiva y atención en aprendices SENA según su desempeño académico [Cognitive flexibility and attention in SENA learners according to their academic performance] (Tesis de máster). Universidad Internacional de la Rioja, Colombia. https://reunir.unir.net/handle/123456789/4876
[12] Canet-Juric, L., Introzzi, I., Andrés, M. L. & Stelzer, F. (2016). La contribución de las funciones ejecutivas a la autorregulación [Contribution of executive functions to self-regulation]. Cuadernos de Neuropsicología, Panamerican Journal of Neuropsychology, 10(2), 106-128. http://www.cnps.cl/index.php/cnps/article/view/238/253
[13] Defaz, G. J. (2017). El desarrollo de habilidades cognitivas mediante la resolución de problemas matemáticos [The development of cognitive skills by solving mathematical problems]. Journal of Science and Research, 2(5), 14-17, https://doi.org/10.26910/issn.2528-8083vol2iss5.2017pp14-17
[14] Scattarética, F. (2017). Caracterización de tareas multiplicativas a partir de la invención de problemas matemáticos [Characterization of multiplicative tasks from the invention of mathematical problems] (Tesis de licenciatura). Universidad Catolica del Norte, Antofagasta, Chile. http://funes.uniandes.edu.co/9296/
[15] Budiarto, M.T.; Khabibah, S. & Setianingsih, R. (2017). Construction of High School Students' Abstraction Levels in Understanding the Concept of Quadrilaterals. International Education Studies, 10(2), 148-155. doi: https://doi.org/10.5539/ies.v10n2p148
[16] Caviedes-Barreda, S.; de Gamboa-Rojas, G. & Badillo-Jiménez, E. (2019). Conexiones matemáticas que establecen maestros en formación al resolver tareas de medida y comparación de áreas [Mathematical connections established by teachers in training by solving measurement tasks and comparing areas]. Praxis 15(1), 69-87. http://dx.doi.org/10.21676/23897856.2984
[17] Suh, J. & Seshaiyer, P. (2015). Examining Teachers' Understanding of the Mathematical Learning Progression through Vertical Articulation during Lesson Study. Journal of Mathematics Teacher Education, 18(3), 207-229. http://dx.doi.org/10.1007/s10857-014-9282-7
[18] Georgius, K. (2013). Planning and Enacting Mathematical Tasks of High Cognitive Demand in the Primary Classroom. ProQuest LLC, Ph.D. Dissertation, New York University. https://search.proquest.com/docview/1530478491
[19] Ni, Y.; Zhou, D.-H. R.; Cai, J.; Li, X.; Li, Q.; & Sun, I. X. (2017). Improving cognitive and affective learning outcomes of students through mathematics instructional tasks of high cognitive demand. Journal of Educational Research, 111(6), 704-719. https://doi.org/10.1080/00220671.2017.1402748
[20] Ni, Y.; Zhou, D.; Li, X. & Li, Q. (2013). Relations of Instructional Tasks to Teacher-Student Discourse in Mathematics Classrooms of Chinese Primary Schools. Cognition and Instruction, 32(1), 2-43. https://doi.org/10.1080/07370008.2013.857319
[21] Barriteau, C. (2013). Managing Mathematics: How Does Classroom Management Affect the Maintenance of High Cognitive Demand Tasks during Lessons with Standards-Based Instructional Materials? ProQuest LLC, Ph.D. Dissertation, New York University. https://search.proquest.com/docview/1417776134
[22] McCormick, M. (2016). Exploring the Cognitive Demand and Features of Problem Solving Tasks in Primary Mathematics Classrooms. Mathematics Education Research Group of Australasia, Paper presented at the Annual Meeting of the Mathematics Education Research Group of Australasia (MERGA) (39th, Adelaide, South Australia, 2016). https://eric.ed.gov/?q=+tasks+of+high+cognitive+demand&pg=2&id=ED572329
[23] Mwadzaangati, Li. (2019). Comparison of Geometric Proof Development Tasks as Set up in the Textbook and as Implemented by Teachers in the Classroom. Pythagoras-Journal of the Association for Mathematics Education of South Africa, 40(1), 1-14. https://pythagoras.org.za/index.php/pythagoras/article/view/458
[24] Csikszentmihalyi, M. (2014). Learning, “flow,” and happiness. In Applications of Flow in Human Development and Education, 153–172. https://doi.org/10.1007/978-94-017-9094-9_7
[25] Csikszentmihalyi, M. & Csikszentmihalyi, I. S. (Eds.). (1998). Optimal experience. Psychological studies of flow in consciousness. Desclée de Brouwer.
[26] Csikszentmihalyi, M. (1998a). Creativity. The Flow and Psychology of Discovery and Invention. Paidós.
[27] Csikszentmihalyi, M. (1998b). Fluir (Flow). Una psicología de la felicidad. Editorial Kairós.
[28] Nakamura, J. (1998). Optimal experience and applications of talent. En M. Csikszentmihalyi e I. S. Csikszentmihalyi (Eds.), Optimal experience. Psychological studies of flow in consciousness (pp. 71-90). Desclée de Brouwer.
[29] Wu, J. H. & Lin, C. Y. (2017). A multilevel analysis of teacher and school academic optimism in Taiwan elementarys. Asia Pacific Education Review, 19(1), 53-62. https://doi.org/10.1007/s12564-017-9514-5
[30] Yeh, Y.-C & Lin, C. S. (2018). Achievement goals influence mastery experience via two paths in digital creativity games among elementary school students. Journal of Computer Assisted Learning, 34(3), 223-232. https://doi.org/10.1111/jcal.12234
[31] Challco, G. C., Andrade, F. R. H., Borges, S. S., Bittencourt, I. I. & Isotani, S. (2016). Toward a unified modeling of learner’s growth process and flow theory. Journal of Educational Technology & Society, 19(2), 215-227. https://www.j-ets.net/ETS/issues475d.html?id=71
[32] Mesurado, B. (2008). Validez factorial y fiabilidad del cuestionario de experiencia óptima (Flow) para niños y adolescentes [Factor validity and reliability of the optimal experience questionnaire (Flow) for children and adolescents]. Revista Iberoamericana de Diagnóstico y Evaluación - e Avaliação Psicológica, 1(25), 159-178. Recuperado de http://www.redalyc.org/articulo.oa?id=459645445009
[33] Garces-Bascal, R.M., Cohen, L. & Tan, L. S. (2011). Soul behind the skill, heart behind the technique: Experiences of flow among artistically talented students in Singapore. Gifted Child Quarterly, 55(3), 194-207. https://doi.org/10.1177/0016986211413574
[34] Ersöz, G. & Eklund, R. C. (2017). Behavioral regulation and dispositional flow in exercise among American College Students relative to stages of change and gender. Journal of American College Health, 65(2), 94-102. https://doi.org/10.1080/07448481.2016.1239203
[35] Hong, F.-Y. (2017). Antecedent and consequence of school academic optimism and teachers’ academic optimism model. Educational Studies, 43(2), 165-185. https://doi.org/10.1080/03055698.2016.1248902
[36] Makvandi, A., Naderi, F., Makvandi, B., Pasha, R. & Ehteshamzadeh, P. (2018). Academic optimism and organizational citizenship behaviour amongst secondary school teachers. International Journal of Emotional Education, 10(1), 164-166. https://www.um.edu.mt/ijee
[37] Sedigh, A., Jenaabadi, H. & Pourghaz, A. (2016). The relationship of mental pressure with optimism and academic achievement motivation among second grade male high school students. International Education Studies, 9(8), 127-133. https://doi.org/10.5539/ies.v9n8p127
[38] Bologna, E. & Urrutia, A. (2011). Comparación entre dos grupos [Comparison between two groups]. En: Eduardo Bologna (2001). Estadística para la psicología y educación [Statistics for psychology and education], pp. 371 – 400. Brujas.
[39] Campbell, D.T. & Stanley, J.C. (2011). Diseños expe rimentales y cuasiexperimentales en la investigación social [Experimental and quasi-experimental designs in social research]. Amorrortu.
[40] Ministerio de Educación, Perú (Minedu, 2016). Programa curricular de Educación Primaria [Primary Education Curriculum Program]. http://www.minedu.gob.pe/curriculo/pdf/programa-curricular-educacion-primaria.pdf