International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 1 - Issue 7, August 2012 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Effect of Quantum Confinement on The Wavelength of CdSe, ZnS And GaAs Quantum Dots (Qds)

[Full Text]



Chukwuocha, E.O, Onyeaju, M.C



quantum dots, exciton, Brus, confinement, heterostructures, thinfilms, photoluminescent



The effect of confinement on quantum dots (QDs) of CdSe, ZnS and GaAs on the wavelength has been studied using the Brus equation at various confinement radii. It is observed that the QDs of CdSe and GaAs possess the trait for possible extension of their wavelength to match the IBSC systems for communication in the optical C band.



[1] P. Martyniuk and A. Rogalski, Quantum-dot infrared photodetectors: Status and outlook, Progress in Quantum Electronics 32 (2008) 89-120.

[2] A. ALagatsky, C. G. Leburn, C.T.A. Brown, W. Sibbett, S. A. Zolotovskaya, and E.U. Rafailov, Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers, Progress in Quantum Electronics 34 (2010) 1-45.

[3] A. Schuler, M. Python, M. Valle del Olmo, and E. De Chambrier, Quantum dot containing nanocomposite thinfilms for photoluminescent solar concentrators, Solar Energy 81 (2007)1159-1165.

[4] Elena Serrano, Guillermo Rus, and Javier Garcia-Martίnez, Nanotechnology for sustainable energy, Renewable and Sustainable Energy Reviews 13 (2009) 2373-2384.

[5] E.O. Chukwuocha, M.C. Onyeaju, and T. S.T. Harry, Theoretical Studies on the Effect of Confinement on Quantum Dots Using the Brus Equation, World Journal of Condensed Matter Physics, 2012, 2, 96-100.

[6] V.M. Ustinov, A.E. Zhukov, A.R. Kovsh, N.A. Maleev, S.S. Mikhrin, A.F. Tsatsul’nikov, M.V. Maximov, B.V. Volovik, D.A. Bedarev, P.S. Kop’ev, Z.I. Alferov, L.E. Vorob’ev, D.A. Firsov, A.A. Suvorova, I.P. Soshnikov, P. Werner, N.N. Ledentsov and D. Bimberg, Long-wavelength emission from self-organized InAs quantum dots on GaAs substrates, Microelectronics Journal 31 (2000) 1-7

[7] P. Miska, J. Even, C. Paranthoen, O. ehaese, H. Folliot, S. Loualiche, M. Senes, and X. Marie, Optical properties and carrier dynamics of InAs/InP(1 1 3)B quantum dots emitting between 1.3 and 1.55µm for laser applications, Physica E 1(2003) 56-59.

[8] Enzmann Roland, Mario Barei, Daniela Baierl, Norman Hauke, Gerhard Bohm, Ralf Meyer, Jonathan Finley, and Markus-Christian Amann, Design and realization of low density InAs quantum dots on AlGaInAs lattice matched to InP(0 0 1), Journal of Crystal Growth 312 (2010) 2300-2304.

[9] A. Pancholi, S.P Bremner, J.Boyle, V.G Stoleru, and C.B Honsberg, Variability of heterostructure type with thickness of barriers and temperature in InAs/GaAsSb quantum dot system, Solar Energy Materials & Solar cells 94 (2010) 1025-1030.

[10] Davies, J.H., The Physics of low-Dimensional semiconductors: An introduction, Cambridge University Press 1998.

[11] Harbold and Monica, The quantum dot, Webb lab, Cornell University, Ithaca, New York, 2008.

[12] L.E Brus, Electron-Electron and Electron-Hole Interactions in Small semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State, J. Chem. Phys. 80 (1984) 4403.

[13] A.F Van Driel., "Frequency dependent spontaneous emission rate from CdSe and CdTe Nanocrystals: Influence of dark states". Physical Review Letters 95 2005 (23): 236804