IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 12, December 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Influence Of Aluminum Particles On Thermal Interface Material Hardness And Thermal Conductivity

[Full Text]

 

AUTHOR(S)

R. Kamarudin, M. Z. Abdullah, Z. Bachok, M. S. Abdul Aziz, F. Che Ani

 

KEYWORDS

Thermal interface material, thermal conductivity, aluminum particles, hardness, heat rate

 

ABSTRACT

Electronic device heat dissipation is crucial and challenging because it limits the performance of the device. The electronic device is processing data at high speed, significantly generate heat and requires to be dissipated into the environment. Therefore, this experiment aims to investigate the influence of thermal interface material hardness on thermal conductivity. The results were analyzed by using conductivity measurement set-up and scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDX). In the present study, thermal interface material (TIM) is hardened by aluminum oxide (Al@Al2O3) and thermal coefficient are measured for different hardness and the heat rate of 3W and 7W. The results show TIM hardness is significantly improved the thermal conductivity coefficient up to 10 times compare to pure TIM. The results also show that the Al@Al2O3 particles distribution inside the TIM is well distributed. The outcomes of this paper can be a guideline to the semiconductor industries especially for the usage of TIM in product development.

 

REFERENCES

(1) P. Anithambigai, S. Shanmugan, D. Mutharasu, T. Zahner, D. Lacey, Study on thermal performance of high power LED emplying aluminium filled epoxy composite as thermal interface material, Microelectronics Journal, 45, 2014, pp 1726-1733.
(2) T. Xie, Y.L. He, Z.J. Hu, Theoretical study on thermal conductivities silica aerogel composite insulting material, International Journal of Heat and Mass Transfer, Vol 58, issues 1-2, 2013, pp 540-552
(3) A. Shi, Y. Li, J.Z. Xu, D.X. Yang, J. Lei, Z.M. Li, Highly thermally conductive and mechanically robust composite of linear ultrahigh molecular weight polyethylene and boron nitride via constructing nacre-like structure, Composites Science and Technology, Vol 184, 2019, 107858
(4) J.M. Mathews, B. Santhosh, S.S. Vaisakh, S. Ananthakumar, Zn-dust derived Zn/ZnO cermet fillers for thermally conductive high-k epoxy dielectrics, Materials today proceedings, vol 25 (2), 2020, pp 155-162
(5) Z. Lule, J. Kim, Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sezed aluminium nitride, Composites Part A: Applied Science and Manufacturing, Vol 124, 2019, 105506.
(6) Feng, J., Liu, Z. J., Zhang, D. Q., He, Z., Tao, Z. C., Guo, Q. G., Phase change materials coated with modified graphene-oxide as fillers for silicone rubber used in thermal interface materials, New Carbon Materials, 34(2), 2019, 188-195.
(7) Mao, D., Chen, J., Ren, L., Zhang, K., Yuen, M. M. F., Zeng, X., Sun, R., Xu, J. B., Wong, C. P., Spherical core-shell Al@Al2O3 filled epoxy resin composites as high-performance thermal interface materials, Composites Part A, 123, 2019, 260-269.
(8) Yim, Y. J., Park, S. J., Effect of silver-plated expanded graphite addition on thermal and electrical conductivities of epoxy composites in the presence of graphite and copper, Composites Part A, 123, 2019, 253-259.
(9) Jeon D., Kim S., Choi W., Byon C., An experimental study on the thermal performance of cellulose-graphene-based thermal interface materials, International Journal of Heat and Mass Transfer, Vol 132, 2019, 944-951
(10) J. Chen J, X. Gao, Thermal and electrical anisotropy of polymer matrix composite materials reinforced with graphene nanoplatelets and aluminium-based particles, Diamond and Related Material, 2019, 107571
(11) I.L. Ngo, V.A. Truong, An investigation on effective thermal conductivity of hybrid-filler polymer composites under effects of random particle distribution, particle size and thermal contact resistance, International Journal of Heat and Mass Transfer, Vol 144, 2019, 118606.
(12) L. Chen, Y.Y, Sun, J.Lin, X.Z. Du, G.S. Wei, S.J. He, S. Nazarenko, Modelling and analysis of synergistic effect in thermal conductivity enhancement of polymer composites with hybrid filler, International Journal of Heat and Mass Transfer, 81 , 2015, pp 457-464.
(13) K. Sanada, Y.Tada, Y. Shindo, Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers Composites Part A, Applied Science Manufacturing, 40 (6-7), 2009, pp 724-730.
(14) C.V. Madhusudana, F.F. Ling, Thermal contact conductance, Springer-Verlag, New York, 1996, pp 1-43
(15) L.T. Yeh, R.C. Chu, Thermal management of microelectronic equipment, ASME, New York, 2002
(16) R. Prasher, Thermal interface materials: historical perspective, status and future directions, Proceeding of IEEE, 94(8) (2006), pp. 1571-1586
(17) A. Bar-Cohen, K.Matin, S. Narumanchi, Nanothermal interface materials: technology review and recent results, J. Electron. Pack., 137(4) (2015), Article 040803
(18) J. Hansson, T.M. Nilsson, L. Ye, J. Liu, Novel nanostructured thermal interface materials : a review, International Material Rev., 2017, pp 1-24
(19) K. Pashayi, H.R. Fard, F. Lai, S. Iruvanti, J. Plawsky, T. Borca-Tasciuc, Self constructed tree-shape high thermal conductivity nanosilver networks in epoxy, Nanoscale, 6 (8), 2014, pp 4292-4296
(20) R. Kempers, A. M. Lyons, A.J. Robinson, Modelling and experimental characterization of metal microtextured thermal interface materials, International Journal Heat Transfer, 136 (1), 2014, Article 011301
(21) M.T. Barako, S.Roy-Panzer, T.S. English, T.Kodama, M.Asheghi, T.W.Kenny, K.E. Goodson, Thermal conduction in vertically aligned copper nanowire arrays and composites, ACS Appl. Material Interf. 7(34), 2015, pp 19251-19259.
(22) Jin. C, JC Wang, J.A. Weibel, L. Pan, A compliant microstructured thermal interface material for dry and pluggable interfaces, International Journal of Heat and Mass Transfer, Vol 131, 2019, pp 1075-1082
(23) P.F. Chang, L. Bai, R.Y. Bao, S.W. Wang, Z.Y. Liu, M.B. Yang, J. Chen, W. Yang, Superior thermal interface materials for thermal management, Composites Communications, Vol 12, 2019, pp 80-85.