IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 12, December 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



What You Say Define Who You Are? Word Exploration And Automatic Personality Detection

[Full Text]

 

AUTHOR(S)

Ahmad Fikri Iskandar, Ema Utami, Agung Budi Prasetio

 

KEYWORDS

Personality Detection, Myers Briggs Type Indicator, Classification

 

ABSTRACT

The personality of people being have their individual differences affects every aspect of their life. In the psychology field, the concept of personality is considered a powerful but imprecisely defined construct. There are some popular personality assessments namely, Big Five, Dominance Influence Steadiness Compliance (DISC), and Myers-Briggs Type Indicator (MBTI). This works do exploration about the word used each dimension of Myers-Briggs Type Indicator (MBTI) personality trait and use machine learning technique to classify text into different personality traits such as Introversion-Extroversion (IE), Sensing-iNtuition (NS), Thinking- Feeling (FT) and Judging-Perceiving(JP). After doing some hypothesis tests, there is difference between each axis about people-related word for IE dimension, counterfactual word for NS dimension, objective word for TF dimension, and rigid word for JP dimension. The best accuracy user MBTI classification result for IE dimension is 75.80%, NS dimension is 55.52%, TF dimension is 95.02% and JP dimension is 88.26%.

 

REFERENCES

[1] T. Yılmaz, A. Ergil, and B. İlgen, “Deep Learning-Based Document Modeling for Personality Detection from Turkish Texts,” Adv. Intell. Syst. Comput., vol. 1069, pp. 729–736, 2020, doi: 10.1007/978-3-030-32520-6_53.
[2] E. Utami, A. D. Hartanto, S. Adi, I. Oyong, and S. Raharjo, “Profiling analysis of DISC personality traits based on Twitter posts in Bahasa Indonesia,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2019, doi: 10.1016/j.jksuci.2019.10.008.
[3] E. Susilawati, H. Sitompul, and J. Situmorang, “The Differences in Using Direct Instruction (DI) Learning Strategy Based on Competitive Behavior to Civic Education Learning Achivement,” no. January 2018, 2018, doi: 10.2991/aisteel-18.2018.47.
[4] D. Preoţiuc-Pietro et al., “The role of personality, age, and gender in tweeting about mental illness,” pp. 21–30, 2015, doi: 10.3115/v1/w15-1203.
[5] A. F. Iskandar and E. Utami, “Impact of Feature Extraction and Feature Selection Using Naïve Bayes on Indonesian Personality Trait,” 2020 3rd International Conference On Information And Communications Technology (ICOIACT), Pending Publication.
[6] S. Roccas, L. Sagiv, S. H. Schwartz, and A. Knafo, “The Big Five personality factors and personal values,” Personal. Soc. Psychol. Bull., vol. 28, no. 6, pp. 789–801, 2002, doi: 10.1177/0146167202289008.
[7] S. C. Matz and G. M. Harari, “Personality-Place Transactions: Mapping the Relationships Between Big Five Personality Traits, States, and Daily Places,” J. Pers. Soc. Psychol., vol. 2, no. 999, 2020, doi: 10.1037/pspp0000297.
[8] N. Ahmad and J. Siddique, “Personality Assessment using Twitter Tweets,” Procedia Comput. Sci., vol. 112, pp. 1964–1973, 2017, doi: 10.1016/j.procs.2017.08.067.
[9] “The DiSC model - Theory and background - The story behind DiSC – it is older than you think The DiSC model : Theory and background The traditional theories,” pp. 1–16.
[10] D. Pittenger, “Measuring the MBTI and coming up short,” Consult. Psychol. J. Pract. Res., 2005, doi: citeulike-article-id:3171710.
[11] D. Keirsey, Please Understand Me II: Temperament, Character, Intelligence. 1998.
[12] S. Bharadwaj, S. Sridhar, R. Choudhary, and R. Srinath, “Persona Traits Identification based on Myers-Briggs Type Indicator(MBTI) - A Text Classification Approach,” 2018 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2018, pp. 1076–1082, 2018, doi: 10.1109/ICACCI.2018.8554828.
[13] B. Verhoeven, W. Daelemans, and B. Plank, “TwiSty: A multilingual Twitter stylometry corpus for gender and personality profiling,” Proc. 10th Int. Conf. Lang. Resour. Eval. Lr. 2016, pp. 1632–1637, 2016.
[14] L. C. Lukito, A. Erwin, J. Purnama, and W. Danoekoesoemo, “Social media user personality classification using computational linguistic,” Proc. 2016 8th Int. Conf. Inf. Technol. Electr. Eng. Empower. Technol. Better Futur. ICITEE 2016, no. October 2016, 2017, doi: 10.1109/ICITEED.2016.7863313.
[15] M. Fikry, “Ekstrover atau Introver : Klasifikasi Kepribadian Pengguna Twitter dengan Menggunakan Metode Support Vector Machine,” J. Sains dan Teknol. Ind., vol. 16, no. 1, p. 72, 2018, doi: 10.24014/sitekin.v16i1.5326.
[16] A. D. Hartanto, E. Utami, S. Adi, and H. S. Hudnanto, “Job seeker profile classification of twitter data using the naïve bayes classifier algorithm based on the DISC method,” 2019 4th Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2019, pp. 533–536, 2019, doi: 10.1109/ICITISEE48480.2019.9003963.
[17] M. Z. Sarwani and W. F. Mahmudy, “Analisis Twitter Untuk Mengetahui Karakter Seseorang Menggunakan Algoritma Naïve Bayess Classifier,” Semin. Nas. Sist. Inf. Indones., no. November, pp. 2–3, 2015.
[18] Y. I. Claudy, R. S. Perdana, and M. A. Fauzi, “Klasifikasi Dokumen Twitter Untuk Mengetahui Karakter Calon Karyawan Menggunakan Algoritme K-Nearest Neighbor (KNN),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 8, pp. 2761–2765, 2018, [Online]. Available: https://www.researchgate.net/publication/322959490.
[19] V. Ong et al., “Personality prediction based on Twitter information in Bahasa Indonesia,” Proc. 2017 Fed. Conf. Comput. Sci. Inf. Syst. FedCSIS 2017, vol. 11, pp. 367–372, 2017, doi: 10.15439/2017F359.
[20] G. Y. N. N. Adi, M. H. Tandio, V. Ong, and D. Suhartono, “Optimization for Automatic Personality Recognition on Twitter in Bahasa Indonesia,” Procedia Comput. Sci., vol. 135, pp. 473–480, 2018, doi: 10.1016/j.procs.2018.08.199.
[21] Willy, E. B. Setiawan, and F. N. Nugraha, “Implementation of Decision Tree C4.5 for Big Five Personality Predictions with TF-RF and TF-CHI2 on Social Media Twitter,” 2019 Int. Conf. Comput. Control. Informatics its Appl. Emerg. Trends Big Data Artif. Intell. IC3INA 2019, pp. 114–119, 2019, doi: 10.1109/IC3INA48034.2019.8949601.
[22] Z. Zainuddin, “The Impact of Personality: Extrovert vs. Introvert on the Ability in Syntax in Essay Writing,” Stud. English Lang. Educ., vol. 3, no. 2, p. 162, 2016, doi: 10.24815/siele.v3i2.4963.