IJSTR

International Journal of Scientific & Technology Research

Home Contact Us
ARCHIVES
ISSN 2277-8616











 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IJSTR >> Volume 5 - Issue 10, October 2016 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



In-Silico Study Of Water Soluble C60-Fullerene Derivatives And Different Drug Targets

[Full Text]

 

AUTHOR(S)

Mohammad Teimouri, Hamidreza Kamrani, Kiana oskouei, Junaid Muhammad

 

KEYWORDS

Fullerene, C60-derivatives, molecular docking, Binding affinity, Voltage-Gated Potassium Channel, Monoclonal anti-progesterone antibody, Estrogenic 17beta-hydroxysteroid dehydrogenase.

 

ABSTRACT

Fullerene (C60) is a unique carbon molecule that adopts a sphere shape. It has been proved that fullerene and some of its derivatives several disease targets. Fullerene itself is insoluble in water. So, fullerene application is hindered in medical field. In this study, a literature search was performed and all derivatives were collected. The fullerene binding protein, previously reported in literature were also retrieved from protein databank. The docking study were performed with fullerene derivatives and its binding proteins. The selected proteins include Voltage-Gated Potassium Channel, estrogenic 17beta-hydroxysteroid dehydrogenase, and monoclonal anti-progesterone antibody. The binding affinity and binding free energy were computed for these proteins and fullerene derivatives complexes. The binding affinity and binding free energy calculation of the co-crystal ligands were also carried out. The results show the good fitting of fullerene derivatives in the active site of different proteins. The binding affinities and binding free energies of fullerene derivatives are better. The present study gives a detail information about the binding mode of C60 derivatives. The finding will be helpful in fullerene-based drug discovery and facilitate the efforts of fighting many diseases.

 

REFERENCES

[1] Kroto, H.W., J.R. Heath, S.C. O'Brien, R.F. Curl and R.E. Smalley. C 60: buckminsterfullerene. Nature, 1985, 318 (6042):162-163

[2] Kroto, H.W., A. Allaf and S. Balm. C60: Buckminsterfullerene. Chemical Reviews, 1991, 91 (6):1213-1235

[3] Koshland, D.E., Jr. Molecule of the year. Science, 1991, 254 (5039):1705

[4] Karfunkel, H.R., T. Dressler and A. Hirsch. Heterofullerenes: structure and property predictions, possible uses and synthesis proposals. J Comput Aided Mol Des, 1992, 6 (5):521-35

[5] Tebbe, F.N., R.L. Harlow, D.B. Chase, D.L. Thorn, G.C. Campbell, J.C. Calabrese, N. Herron, R.J. Young and E. Wasserman. Synthesis and single-crystal X-ray structure of a highly symmetrical C60 derivative, C60Br24. Science, 1992, 256 (5058):822-825

[6] Becker, L., T.P. Evans and J.L. Bada. Synthesis of C60H2 by rhodium-catalyzed hydrogenation of C60. J Org Chem, 1993, 58 (27):7630-1

[7] Anderson, R.E. and A.R. Barron. Catalytic epoxidation of C60 using Mo(O)2(acac)2/(t)BuOOH. Dalton Trans, 2013, 42 (6):2186-91

[8] Srinivas, R., M. Vairamani and C.K. Mathews. Gas-phase halo alkylation of C60-fullerene by ion-molecule reaction under chemical ionization. J Am Soc Mass Spectrom, 1993, 4 (11):894-7

[9] Tagmatarchis, N. and H. Shinohara. Fullerenes in medicinal chemistry and their biological applications. Mini Rev Med Chem, 2001, 1 (4):339-48

[10] Jensen, A.W., S.R. Wilson and D.I. Schuster. Biological applications of fullerenes. Bioorg Med Chem, 1996, 4 (6):767-79

[11] Chiang, L.Y., J.W. Swirczewski, C.S. Hsu, S. Chowdhury, S. Cameron and K. Creegan. Multi-hydroxy additions onto C60 fullerene molecules. J. Chem. Soc., Chem. Commun., 1992, (24):1791-1793

[12] Chiang, L.Y., R.B. Upasani and J.W. Swirczewski. Versatile nitronium chemistry for C60 fullerene functionalization. Journal of the American Chemical Society, 1992, 114 (26):10154-10157

[13] Braun, T. Water Soluble Fullerene-Cyclodextrin Suframolecular Assemblies Preparation, Structure, Properties An Annotated Bibliography). Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5 (3):615-626

[14] Samal, S. and K.E. Geckeler. Cyclodextrin–fullerenes: a new class ofwater-soluble fullerenes. Chem. Commun., 2000, (13):1101-1102

[15] Atwood, J.L., G.A. Koutsantonis and C.L. Raston. Purification of C60 and C70 by selective complexation with calixarenes. 1994,

[16] Friedman, S.H., D.L. DeCamp, R.P. Sijbesma, G. Srdanov, F. Wudl and G.L. Kenyon. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. Journal of the American Chemical Society, 1993, 115 (15):6506-6509

[17] Sijbesma, R., G. Srdanov, F. Wudl, J. Castoro, C. Wilkins, S.H. Friedman, D.L. DeCamp and G.L. Kenyon. Synthesis of a fullerene derivative for the inhibition of HIV enzymes. Journal of the American Chemical Society, 1993, 115 (15):6510-6512

[18] Schinazi, R., R. Sijbesma, G. Srdanov, C. Hill and F. Wudl. Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene. Antimicrobial agents and chemotherapy, 1993, 37 (8):1707-1710

[19] Tokuyama, H., S. Yamago, E. Nakamura, T. Shiraki and Y. Sugiura. Photoinduced biochemical activity of fullerene carboxylic acid. Journal of the American Chemical Society, 1993, 115 (17):7918-7919

[20] Dugan, L.L., D.M. Turetsky, C. Du, D. Lobner, M. Wheeler, C.R. Almli, C.K.-F. Shen, T.-Y. Luh, D.W. Choi and T.-S. Lin. Carboxyfullerenes as neuroprotective agents. Proceedings of the National Academy of Sciences, 1997, 94 (17):9434-9439

[21] TSAI, M.C., Y. Chen and L. Chiang. Polyhydroxylated C60, Fullerenol, a Novel Free‐radical Trapper, Prevented Hydrogen Peroxide‐and Cumene Hydroperoxide‐elicited Changes in Rat Hippocampus In‐vitro. Journal of pharmacy and pharmacology, 1997, 49 (4):438-445

[22] Dugan, L.L., J.K. Gabrielsen, P.Y. Shan, T.-S. Lin and D.W. Choi. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiology of disease, 1996, 3 (2):129-135

[23] Huang, H.-C., L. Lu and L. Chiang. Antiproliferative Effect of Polyhydroxylated C60 on Vascular Smooth Muscle Cells. Proc. Electrochem. Soc, 1996, 96:403-410

[24] Jin, H., W. Chen, X. Tang, L. Chiang, C. Yang, J. Schloss and J. Wu. Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents. Journal of neuroscience research, 2000, 62 (4):600-607

[25] Nel, A., T. Xia, L. Mädler and N. Li. Toxic potential of materials at the nanolevel. Science, 2006, 311 (5761):622-627

[26] Maynard, A.D., R.J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberdörster, M.A. Philbert, J. Ryan, A. Seaton and V. Stone. Safe handling of nanotechnology. Nature, 2006, 444 (7117):267-269

[27] Prato, M. [60] Fullerene chemistry for materials science applications. Journal of Materials Chemistry, 1997, 7 (7):1097-1109

[28] Bosi, S., T. Da Ros, G. Spalluto and M. Prato. Fullerene derivatives: an attractive tool for biological applications. European journal of medicinal chemistry, 2003, 38 (11):913-923

[29] Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of computational chemistry, 1996, 17 (5‐6):490-519

[30] Wojciechowski, M. and B. Lesyng. Generalized Born model: Analysis, refinement, and applications to proteins. The Journal of Physical Chemistry B, 2004, 108 (47):18368-18376

[31] Labute, P. The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. Journal of computational chemistry, 2008, 29 (10):1693-1698

[32] Frank, H.Y., V. Yarov-Yarovoy, G.A. Gutman and W.A. Catterall. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacological Reviews, 2005, 57 (4):387-395

[33] Gutman, G.A., K.G. Chandy, S. Grissmer, M. Lazdunski, D. Mckinnon, L.A. Pardo, G.A. Robertson, B. Rudy, M.C. Sanguinetti and W. Stühmer. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacological reviews, 2005, 57 (4):473-508

[34] Pal, S., K. Takimoto, E. Aizenman and E. Levitan. Apoptotic surface delivery of K+ channels. Cell Death & Differentiation, 2006, 13 (4):661-667

[35] Hosm, T., W. Zagotta and R.W. Aldrich. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science, 1990, 250:533-538

[36] Yellen, G. The voltage-gated potassium channels and their relatives. Nature, 2002, 419 (6902):35-42

[37] Bosma, M.M. and B. Hille. Electrophysiological properties of a cell line of the gonadotrope lineage. Endocrinology, 1992, 130 (6):3411-3420

[38] Deutsch, C. and L.-Q. Chen. Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proceedings of the National Academy of Sciences, 1993, 90 (21):10036-10040

[39] Singer-Lahat, D., A. Sheinin, D. Chikvashvili, S. Tsuk, D. Greitzer, R. Friedrich, L. Feinshreiber, U. Ashery, M. Benveniste and E.S. Levitan. K+ channel facilitation of exocytosis by dynamic interaction with syntaxin. The Journal of neuroscience, 2007, 27 (7):1651-1658

[40] MacDonald, P.E., S. Sewing, J. Wang, J.W. Joseph, S.R. Smukler, G. Sakellaropoulos, J. Wang, M.C. Saleh, C.B. Chan and R.G. Tsushima. Inhibition of Kv2. 1 voltage-dependent K+ channels in pancreatic β-cells enhances glucose-dependent insulin secretion. Journal of Biological Chemistry, 2002, 277 (47):44938-44945

[41] Kim, S., S. Widenmaier, W. Choi, C. Nian, Z. Ao, G. Warnock and C. McIntosh. Pancreatic β-cell prosurvival effects of the incretin hormones involve post-translational modification of Kv2. 1 delayed rectifier channels. Cell Death & Differentiation, 2012, 19 (2):333-344

[42] Wang, Q., M.E. Curran, I. Splawski, T. Burn, J. Millholland, T. VanRaay, J. Shen, K. Timothy, G. Vincent and T. De Jager. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature genetics, 1996, 12 (1):17-23

[43] Calvaresi, M. and F. Zerbetto. Baiting proteins with C60. ACS nano, 2010, 4 (4):2283-2299

[44] Li, X.T., X.Q. Li, X.M. Hu and X.Y. Qiu. The inhibitory effects of Ca2+ channel blocker nifedipine on rat kv2.1 potassium channels. PLoS One, 2015, 10 (4):e0124602